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Abstract
As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intru-
sion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature 
extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial 
network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language 
model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class 
imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output depend-
ency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on 
CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 
89.007%, respectively, and improving F1-scores over baselines by 1.218%−13.844% 0.215%−13.779%, and 2.056%−22.587%.

Keywords  Intrusion detection · Multi-class classification · Bidirectional encoder representations from transformers 
(BERT) · Conditional generative adversarial network (CGAN)

1  Introduction

Ensuring network security is becoming more critical 
with the continuous evolution of cyber threats. The 2022 
Cyberthreat Defense Report1 released by CyberEdge organi-
zation shows that successful cyberattacks remain prevalent, 
with over 85% of organizations experiencing at least one 
attack in the past year, and 40.7% have dealt with six or more 
attacks. The top concerns are ransomware, malware, and 
account takeover attacks, which can severely affect national 
security, economic development, and social stability. There-
fore, effectively detecting intrusions in computer networks 
has become an urgent challenge.

Intrusion detection systems (IDS) aim to identify mali-
cious network activities by monitoring traffic patterns 
and system operations. They generate alerts when attacks 
are detected, allowing security personnel to take timely 
response [1]. Machine learning, especially deep learning, has 
emerged as an effective approach for building IDS models by 
automatically learning representations from network traffic 
data [2–4]. Unlike traditional shallow learning models, deep 
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neural networks can capture complex non-linear dependen-
cies and extract informative features through multiple layers 
tailored for high-dimensional learning. This alleviates the 
need for manual feature engineering, enabling end-to-end 
learning of IDS models directly from traffic data.

However, building highly accurate IDS remains challeng-
ing due to the increasing complexity and diversity of attacks. 
Conventional machine learning approaches (e.g., support 
vector machine [5] and naive Bayes [6]) often fail to provide 
satisfactory performance when dealing with massive, high-
dimensional network data with complex features. Though 
deep learning methods can learn inherent representations 
from traffic data through nonlinear structures to meet the 
demands of high-dimensional learning and prediction, the 
continuous evolution of new attack types poses significant 
challenges for intrusion detection based on deep learning.

1.1 � Motivations and related works

Building highly accurate IDS remains challenging due to 
the increasing complexity and diversity of attacks, in which 
imbalanced data and insufficient feature extraction ability 
are important factors that limit performance.

1.1.1 � Network traffic generation

Network intrusion data often exhibits class imbalance, where 
attacks only account for a small fraction compared to normal 
traffic. Moreover, different attack types vary greatly in sam-
ple size and intrinsic patterns. Relying heavily on samples, 
deep learning models trained on such imbalanced datasets 
tend to underfit minority attack classes, resulting in insuf-
ficient feature learning and low detection accuracy.

A common solution is to balance the data through over-
sampling and undersampling techniques. The Synthetic 
Minority Oversampling TEchnique (SMOTE) [7] was used 
to address the problem of network traffic data imbalance [8]. 
Wu et al. [9] proposed a network intrusion detection algo-
rithm based on the enhanced random forest and SMOTE, 
which used a hybrid algorithm combining the k-means 
clustering algorithm with SMOTE sampling to increase 
the number of minor samples and thus achieved a balanced 
dataset. In [10], training an ensemble classifier with under-
sampling data and each sub-ensemble resolved the issue of 
minority attack classes. Oversampling aims to duplicate 
samples from the minority class. In contrast, undersampling 
seeks to remove samples from the majority class. The former 
is prone to overfitting, whereas the latter reduces samples.

Another line of research is to generate more attack sam-
ples of minority classes using the generative adversarial 
network (GAN) [11, 12]. The samples were merged into 
the original dataset, and the combined dataset was used to 
train a multi-classification model for various attacks. For the 

robustness of detection systems, IDSGAN [13] was proposed 
to generate adversarial malicious traffic records aiming to 
attack intrusion detection systems by deceiving and evading 
the detection. In [14], the author proposed a tabular data 
sampling method to balance normal and attack samples. A 
k-nearest neighbor method was used for effective undersam-
pling for normal samples, while a tabular auxiliary classifier 
GAN model was designed for attack sample oversampling. 
He et al. [15] proposed a conditional GAN (CGAN)-based 
collaborative intrusion detection algorithm with blockchain-
empowered distributed federated learning, which introduces 
long short-term memory (LSTM) into the CGAN training to 
improve the effect of generative networks and the generated 
data are used as augmented data and applied in the detection 
and classification of intrusion data.

1.1.2 � Deep features extraction

Informative features must be extracted to clarify class 
boundaries in the low-dimensional space. One solution is to 
map the data into a high-dimensional space through feature 
extraction, making the boundaries among different attacks 
more separable. Deep neural networks can learn to extract 
complex multi-dimensional representations from traffic 
data, transforming attack types into distinct locations in a 
high-dimensional space.

Typical techniques include convolutional neural net-
works (CNN) and LSTM [16]. The former extracts features 
of multi-dimensional tensors through convolution. The lat-
ter can deeply mine data’s temporal and semantic informa-
tion. Steven et al. [17] proposed a character-level IDS based 
on CNN, which treats network traffic records as character 
sequences. Character sequences were encoded as alphabet-
based vectors and aggregated into a matrix for input to CNN 
for classification. Aydın et al. [18] designed an LSTM-based 
system for the detection and prevention of DDoS attacks in a 
public cloud network environment and developed an LSTM 
prediction model for the system. Bi-directional LSTM (BiL-
STM) reinforces the attention on feature backward depend-
ency [19]. Some researchers attempted to solve the binary 
and multi-classification problem of network traffic with 
LSTM and BiLSTM [20–23]. Imrana et al. [23] proposed 
to use a BiLSTM model for network intrusion detection, 
which achieved better accuracy than conventional LSTM. 
A weighted-intrusion-based cuckoo search with a graded 
neural network is presented in [24] to identify and categorize 
the anomalies in a supervisory control and data acquisition 
system through data optimization.

However, due to data complexity and attack diversity, 
boosting feature extraction ability still faces many challenges. 
Large language models [25] possess robust semantic under-
standing and generation abilities in natural language process-
ing (NLP). Researchers adopted universal architectures like 
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Transformer, not relying on domain-specific knowledge, 
and thus can generalize to various domains. Bidirectional 
Encoder Representations from Transformers (BERT) [26] 
is a pre-trained language representation model originally 
developed by Google for natural language processing (NLP) 
tasks. Compared to BiLSTM and LSTM, BERT adopts the 
Transformer architecture with self-attention to capture long-
range dependencies better. With more parameters, BERT can 
learn semantic representations more effectively and achieve 
state-of-the-art results on various NLP tasks including text 
classification and prediction. Given its robust feature extrac-
tion and generalization capabilities, researchers have recently 
explored applying BERT to other domains, such as vulner-
ability prediction and log anomaly detection. Jiao et al. [27] 
proposed ExBERT, which uses the collected vulnerability 
description corpus to fine-tune the pre-trained BERT model, 
aiming to extract the semantic information of vulnerability 
descriptions to predict network security vulnerabilities. 
LAnoBERT [28] is a BERT-based log anomaly detection 
model that detects log parsing free, where BERT extracts 
semantic information in serialized log data and captures 
detailed features to improve the accuracy of log anomaly 
detection. Alkhatib et al. [29] leveraged a BERT-based archi-
tecture to detect message injection intrusions in the controller 
area network bus. However, few studies consider effectively 
integrating pre-trained language models, such as BERT, with 
existing deep learning models or frameworks.

1.2 � Contributions and organization

Unlike existing research solutions, our proposal employs 
a pre-trained language model in NLP to enhance feature 
extraction and data generation. The purpose is to boost 
multi-class intrusion detection through pre-trained language 
model-assisted adversarial learning. The main contributions 
of this work are three-fold:

•	 We present a BERT-enhanced CGAN framework that 
leverages CGAN to augment minority attack samples for 
balancing training data and integrates BERT’s powerful 
feature representations to boost detection accuracy.

•	 The BERT model is embedded in the CGAN discrimina-
tor to extract informative features from generated sam-
ples, which improves the CGAN generator to produce 
more realistic samples through adversarial training.

•	 Experimental results on multiple authoritative datasets 
demonstrate that the proposed scheme is superior to 
baseline approaches in accuracy, precision, recall, and 
F1-score. It improves the weighted F1-score for multi-
class classification on CSE-CIC-IDS20182 by 1.218%−

13.844%. On NF-ToN-IoT-v2,3 and NF-UNSW-NB15-
v2,4 the improvement ranges are 0.215%−13.779% and 
2.056%−22.587%.

The follow-up structure of this paper is organized as 
follows. Section 2 introduces the preliminaries for CGAN 
and BERT models. The proposed framework is discussed 
in Section 3. Section 4 presents the dataset selection and 
experimental methodology. We conduct experimental results 
and performance evaluation in Section 5, followed by the 
concluding remarks in Section 6.

2 � Preliminaries

2.1 � Conditional GAN (CGAN)

A GAN consists of a generator (Generator, G) and a dis-
criminator (Discriminator, D), both of which are trained 
in an adversarial game [11]. With the ability to augment 
samples, the GAN has become a widely used technique for 
expanding datasets. The GAN can generate samples close 
to the actual probability distribution by training with actual 
data. The augmented dataset makes the trained model more 
generalizable. The GAN framework can be formulated as 
a two-player min-max game between a discriminative net-
work, D(x), and a generative network, G(z), given by

In the discriminator, x is input from the accurate distribu-
tion, p(x), to a discriminative function. z denotes the input 
noise. The generator’s p(z) represents prior noise distribution.

The CGAN model [30] extends GAN with conditional 
control, allowing us to condition the network with additional 
information for generating different types of network traf-
fic. Some investigators studied CGAN-based dataset expan-
sion [31]. The input of G includes random noise and addi-
tional conditional information, y , which can be any auxiliary 
information (e.g., class labels or data from other modalities). 
Unlike GAN, whose input is only random noise, CGAN can 
feed y as an additional input layer to the discriminator and 
the generator. The optimization objective of both G and D 
for CGAN can be expressed as

(1)
min

G
max
D

V (D,G) = Ex∼p(x)

[
logD(x)

]

+ Ez∼p(z)

[
log (1 − D(G(z)))

]
.

(2)
min

G
max
D

V(D,G) = Ex∼p(x)

[
logD(x|y)

]

+ Ez∼p(z)

[
log (1 − D(G(z|y)))

]
.

2  https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2018.​html

3  https://​rdm.​uq.​edu.​au/​files/​a4ad7​080-​ef9c-​11ed-​a964-​b7059​6e96a​d5
4  https://​rdm.​uq.​edu.​au/​files/​8c6e2​a00-​ef9c-​11ed-​827d-​e762d​e1868​48

https://www.unb.ca/cic/datasets/ids-2018.html
https://rdm.uq.edu.au/files/a4ad7080-ef9c-11ed-a964-b70596e96ad5
https://rdm.uq.edu.au/files/8c6e2a00-ef9c-11ed-827d-e762de186848
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2.2 � Transformer and BERT

A Transformer [32] is a deep learning model that adopts a 
mechanism of self-attention-based encoder-decoder. This 
model relies entirely on the attention mechanism to map 
the global dependencies between input and output. The 
encoder maps the input sequence of symbols into a con-
tinuous high-dimensional representation. Given {x1, ..., xn} , 
the decoder generates an output sequence, z = {z1, ..., zn} . 
The encoder and decoder support stacked self-attention 
and point-wise. The Transformer combines two attention 
mechanisms, Scaled Dot-Product Attention and Multi-Head 
Attention. The former queries all keys by dot product and 
calculates the weight value via the softmax function. The 
latter allows the model to jointly attend to information from 
different representation subspaces at various locations. The 
self-attention layer connects all the neural network struc-
ture layer positions with several sequentially executed 
operations. This connection makes the feature information 
learned by different neural network layers before and after 
be paid attention by the self-attention layer, which is con-
ducive to establishing long-range dependencies between 
input and output sequences. The self-attention mechanism 
enables the Transformer to extract more hidden features 
for learning.

BERT inherits the Transformer’s self-attention-based 
architecture and implements pre-trained deep bidirectional 
representations. It has become a popular deep neural net-
work model in NLP. With powerful feature extraction, BERT 
can learn more about the global input and output dependen-
cies. The fine-tuned BERT can be used to handle specific 
tasks. The pre-trained model parameters are used to initial-
ize the BERT model. After initialization, labeled data from 
downstream tasks are used to fine-tune the parameters of 
BERT end-to-end.

3 � Solution

Generally, generating a specific proportion of each attack 
type through GAN requires separate training [12]. Con-
ditional GANs (CGANs) allow controlling the categories 
and proportions of generated anomalous attacks, support-
ing diverse classification. However, accurately identifying 
attacks with inconspicuous features remains difficult. To 
address this, we embed BERT into the CGAN discrimi-
nator to enhance intrusion detection. BERT can capture 
informative features from network traffic, alleviating per-
formance degradation due to class imbalance.

As illustrated in Fig. 1, the proposed intrusion detection 
framework includes three parts:

Fig. 1   Pre-trained language model-enhanced adversarial training framework for intrusion detection
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•	 Data preprocessing converts non-textual network 
traffic statistical feature data into text-formatted data 
to adapt to the large-scale language model BERT (see 
Section 3.1).

•	 Generator generates different kinds of network attack 
traffic samples based on conditional control information 
to augment the dataset (to be discussed in Section 3.2).

•	 BERT-enhanced classifier extracts network traffic 
features and encodes them into high-dimensional repre-
sentations. The module classifies the high-dimensional 
feature representations from BERT and the generator 
(see Section 3.3).

3.1 � Data preprocessing

The chosen datasets have ten types of network traffic, 
including benign data and nine abnormal attacks, in 
which duplicate data is removed. Acceptable input types 
for BERT are strings. Features not in character form are 
converted to characters that BERT can handle. Each piece 
of traffic data after conversion corresponds to a sentence, 
and the statistical features of the traffic data correspond to 
the words in the sentence. BERT extracts hidden features 
from sentences, equivalent to pulling high-dimensional 
feature representations from network traffic data. Finally, 
the labels have been encoded as one-hot vectors to support 
classification training.

The proportion of benign data flow in real-world net-
works exceeds that of abnormal attack data flow. When pro-
cessing the data, we do not excessively reduce the benign 
traffic data and maintain the normal state of benign and 
redundant anomalous attack data.

3.2 � Generator

In the CGAN framework, network traffic class labels are 
selected as conditional control information y, input to the 
generator. The other input to the generator, G, comes from 

a random noise vector in the prior space p(z) . The generator 
uses the input to generate a new high-dimensional feature 
representation, expressed by g = G(z, y).

The generator G and discriminator D are trained alter-
nately, and the discriminator is optimally trained before the 
generator parameter update. In this case, the generator must 
minimize the Jensen-Shannon (JS) dispersion between the 
real and the generated traffic, expressed as

where JSD(px||pz) calculates the similarity degree between 
real traffic x and noise z of the probability density distributions.

Figure 2 shows the structure diagram of the generator. 
The noise vector z and the network attack class label infor-
mation y are inputted into the network together. The first 
fully connected layer uses the Leaky ReLU activation func-
tion. When a negative value occurs in the network parameter 
update process, the gradient of the Leaky ReLU activation 
function still exists, avoiding that the gradient of the ordi-
nary ReLU activation function is zero and the parameters 
cannot be updated when the input is negative. The Reshape 
layer converts the shape to 2D. The two-dimensional matrix 
is upsampled by deconvolution, the convolution kernel size 
is 4 × 4 , the stride is 2 × 2 , and the activation function is 
Leaky ReLU. To ensure the diversity of the generated data, 
deconvolution upsampling is repeated, the convolution ker-
nel size is 4 × 4 , the stride is 2 × 2 , and the activation func-
tion is Leaky ReLU. After two deconvolution upsampling, 
convolution is used for downsampling. The convolution 
kernel size is 5 × 5 , and the stride is 1 × 1 , with activation 
function tanh. Finally, through the fully connected layer, the 
output result is obtained.

3.3 � BERT‑enhanced classifier

The discriminator network of most GANs only supports 
binary classification that outputs whether the traffic is real 
or generated. We consider a discriminator that supports 

(3)min

G
V (D,G) = − log 4 + 2 ⋅ JSD(px||pz)

Fig. 2   Generator network structure
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multi-class classification (a type of classifier, C), which uses 
three fully connected layers, as shown in Fig. 3, to predict 
whether the data is normal data or a specific type of network 
attack. The last fully connected layer has ten output units, 
and the activation function uses the Softmax function.

Instead of being used for NLP, BERT, in this work, is 
embedded into the CGAN classification network layer for 
solving network traffic detection. For a classification net-
work layer with BERT embedded, the output of the network 
layer needs to be adapted to support network traffic classifi-
cation tasks. As shown in Fig. 4, BERT and C are combined 
into detection modules to classify network traffic data. The 
first token of every sequence is always a special classifica-
tion token ([CLS]). The final hidden state for the token is 
utilized as the aggregate sequence representation for clas-
sification tasks. Sequences are separated with a special token 
([SEP]). The parameters of the pre-trained model are used to 
initialize BERT. Then, the preprocessed network intrusion 
dataset is used to fine-tune BERT. Compared with randomly 
initializing BERT parameters, using the parameters of a pre-
trained model can accelerate the learning of traffic features, 
conducive to fast convergence.

Real traffic data, x, is considered a sentence token to be 
processed in the BERT model. Special characters, such as 
[CLS] and [SEP], are added before and after each traffic data 
sequence to facilitate BERT’s recognition. Three matrices are 
used in multi-head attention to calculate the attention score 
among traffic data sequences. The embedded sequence of x is 
multiplied by the weight matrices WQ ∈ Rd×dq , WK ∈ Rd×dk 
and WV ∈ Rd×dv , where Q , K and V are the query, key and 
value matrix respectively, and the WQ , WK and WV are their 

trainable weight matrices. For each header, the self-attention 
function is performed by inputting the embedded sequence of 
x to get a new vector, given by

The vector at the [CLS] token position of the hidden state 
at the last layer is used as the semantic representation of traf-
fic data. The classifier handles h and g. h is the probability 
distribution p(x) of the preprocessed traffic data mapped to a 
high-dimensional space by BERT encoding. g = G(z, y) ∈ Rd 
is the high-dimensional feature representation generated by the 
generator according to class label y and random noise vector 
z. The probability of classifier output Y = C(x) represents the 
traffic type. During training, the generator attempts to generate 
high-dimensional feature representations of network traffic to 
confuse the classifier, which class of traffic data the classifier 
tries to distinguish correctly.

The detection model composed of BERT and classifier C is 
trained end-to-end using cross-entropy loss function, and the 
Adaptive Moment Estimation (Adam) algorithm as in [33] is 
used for parameter update. The loss function is expressed as

C needs to distinguish the categories of feature representa-
tions that BERT encodes the network traffic data to form 
a high-dimensional space. At the same time, the classifier 
needs to distinguish the categories of the samples generated 
by G. The objective functions of G and C for the min-max 
optimization are formulated as

(4)headi = softmax(
Q⋅KT

√
dk

)V.

(5)L
c
= −Ex∼p(x)[logC(x)].

Fig. 3   Classification network structure
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When training is complete, the classifier can distinguish 
between benign network traffic and different types of net-
work attacks. At the same time, the high-dimensional feature 
representation of network traffic generated by G becomes 
approximately the proper probability distribution, p(x).

In the BERT-enhanced classifier, the role of BERT is 
not simply used to enhance the feature extraction abil-
ity for network traffic. More importantly, BERT forms a 
mutually reinforcing relationship with G. Specifically, to 
learn the proper probability distribution traffic features, 
the generator generates a high-dimensional feature rep-
resentation of network traffic that changes along with the 
fine-tuning of BERT parameters. It continuously learns the 
high-dimensional feature representation of network traf-
fic. The classifier also constantly updates the parameters.

3.4 � Training strategy

The CGAN generator must learn the high-dimensional 
feature representation of network traffic known by BERT. 

(6)
min

G
max
C

V (C,G) = Ex∼p(x)

[
logC(x)

]

+ Ez∼p(z)

[
log (1 − C(G(z, y)))

]
.

During training, the GAN freezes the parameters of one 
part (G or C) and trains the parameters of the other. The 
two sides alternate until the training is complete. CGAN, 
derived from GAN, follows the training policy. In our 
scheme, BERT is embedded in CGAN, and the entire 
model training is still to update the parameters alternately 
between G and C. The implementation details of the pro-
posed method fusion training algorithm are summarized 
in Algorithm 1. First, the BERT model is initialized with 
pre-trained model parameters, and the parameters of G 
and C are randomly initialized. Since BERT did not learn 
useful information before fine-tuning, the first step is to 
fine-tune BERT and update the C’s parameters, see lines 
3-7. After the first step, BERT learns the high-dimensional 
feature representation of network traffic and then enters 
the second step to train CGAN, see lines 9-16. The two 
phases are alternated until the training of the proposed 
model is completed.

Training a GAN model and a classification network 
are separated in some existing solutions [12, 34]. These 
methods use the trained GAN to generate samples and 
then prepare a classification network using the augmented 
dataset. Due to the separate training processes, the number 
of generated samples can be set as required.

Fig. 4   BERT for supporting network traffic classification: Each sequence corresponds to a piece of network traffic data. Features represent statis-
tical characteristics of network traffic
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Unlike existing frameworks, the traffic type prediction 
and sample generation (training a CGAN and a classifica-
tion network) in the proposed framework are fused. The 
CGAN model continuously updates parameters during 
training to generate samples closer to the actual probability 
distribution. At the same time, the classification network 
classifies data from BERT and G. The initially generated 
samples are immature and different from the actual prob-
ability distribution. With the update of model parameters, 
the generated samples become realistic. Accordingly, the 
quantity and quality of generated samples are gradually 
determined during training rather than being set by the 
experimenter. Through the fusion training, the classifica-
tion network is promoted to classify traffic types efficiently.

For the model training, it needs to compute and update 
the gradients of the BERT, C, and G. The number of 
floating-point operations to update the BERT, C, and G is 
O(w + p + q) . When batch size is set to m, each epoch gen-
erates m ⋅ O(w + p + q) floating-point operations. Accord-
ingly, the total computation complexity of the proposed 
method is O((m ⋅ (w + p + q) ⋅ Ne) , where Ne is the total 
number of training epochs.

4 � Experimental preparation

4.1 � Dataset selection

We evaluated the detection performance on three chal-
lenging datasets: CSE-CIC-IDS2018, NF-ToN-IoT-v2, and 
NF-UNSW-NB15-v2. Table 1 lists the data distribution in 
each dataset, with different degrees of data imbalance. Most 
of the CSE-CIC-IDS2018 and NF-UNSW-NB15-v2 data-
sets belong to normal traffic, especially the latter, where the 

Table 1   Data distribution of three datasets

Dataset Network traffic type Training set Test set

CSE-CIC-IDS2018 Benign 360162 183683
DoS attacks-Hulk 80391 40187
DDOS attack-HOIC 61670 30828
DDoS attacks-LOIC-

HTTP
43214 21607

SSH-Bruteforce 40314 20159
Infilteration 36275 18109
Bot 35743 17868
FTP-BruteForce 28009 14112
DoS attacks-

GoldenEye
16598 8302

DoS attacks-
SlowHTTPTest

13416 6731

In total 715792 361586
NF-ToN-IoT-v2 Benigh 129636 32409

Scanning 80352 20088
XSS 52164 13041
DDoS 43056 10764
Password 24516 6129
DoS 15156 3789
Injection 14544 3636
Backdoor 360 90
MITM 144 36
Ransomware 72 18
In total 360000 90000

NF-UNSW-NB15-v2 Benign 120000 37000
Exploits 20509 11042
Fuzzers 14505 7805
Generic 10770 5790
Reconnaissance 8337 4442
DoS 3773 2021
Analysis 1446 853
Backdoor 1416 753
Shellcode 937 490
Worms 91 73
In total 181784 70269

Algorithm 1   Fusion training
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proportion of normal traffic is as high as 66.01%, and the 
total proportion of attack traffic is less than 35%. For the 
NF-ToN-IoT-v2 dataset, normal traffic accounts for 36.01%, 
the highest among the ten categories, and the least attack 
category accounted for only 0.02%.

4.2 � Implementation details

The preprocessed datasets were used for experiments and 
performance evaluation. Due to category imbalance, if the 
data is randomly sampled during model training, those cat-
egories that occupy a minority may not be extracted within 
a batch. For this situation, we rewrote select_sample() to set 
the number and proportion of each attack category in each 
batch as needed.

The number of network data in a batch was fixed at 100 
in the experiment. The data of each batch was obtained 
by random sampling. For CSE-CIC-IDS2018, there were 
50 pieces of data in a batch for Benign and three for DoS 
attacks-SlowHTTPTest, a type of attack with minor data. 
The total number of data entries for Benign-type attacks in 
the training set is 360162. About 50 Benign type data were 
randomly selected for a batch. The rest of the categories 
followed the same approach.

In the proposed framework, BERT, as feature extraction 
network layers, combines network output units composed 
of fully connected layers to perform multi-classification 
of network traffic. The number of layers (i.e., Transformer 
blocks), the hidden size, and self-attention heads are denoted 
as L, H, and A, respectively. We primarily report the setting 
on model sizes: BERT ( L = 2 , H = 256 , A = 4 ; The total 
number of parameters is about 10 M).

All models in our experiments ran on Python 3.5, Tensor-
flow 2.12.0 environment. The computer configuration is Intel 
Core i9-13900K CPU, RTX 4090 24 G, and 128GB RAM.

4.3 � Baseline selection and parameter setting

For comprehensive comparison and verification, we selected 
and designed five baseline approaches in the following:

•	 LSTM, utilized to solve the binary and multi-classification 
of network traffic in [18]. The LSTM benchmark consists 
of four LSTM layers. The units of each layer are 50, 50, 
30, and 30, and the total amount of parameters is 66K.

•	 BiLSTM, used to multi-class intrusion detection in [23]. 
This benchmark is also composed of four LSTM layers. 
Because it learns long-term bidirectional dependencies, 
the units of each layer are 50 × 2 , 50 × 2 , 30 × 2 , and 
30 × 2 , respectively. The total amount of model param-
eters is 169K.

•	 LSTM-CGAN: LSTM can also serve as feature extrac-
tors. We embed LSTM into the CGAN discriminator and 
compare it with the proposed solution to evaluate the 
collaborative performance of CGAN and BERT.

•	 BiLSTM-CGAN: Like LSTM-CGAN, BiLSTM is 
embedded into the CGAN discriminator to compare the 
proposed solutions further.

•	 BERT, which is consistent with BERT embedded in the 
proposed framework.

4.4 � Evaluation metrics

Indicators such as accuracy, precision, recall, and F1-score, 
widely adopted in related fields, are used for performance 
evaluation. Accuracy is the most intuitive evaluation index 
to reflect the model’s performance. For unbalanced data 
classes, F1-score, precision, and recall complement each 
other to evaluate model performance comprehensively. The 
following are the accuracy, precision, recall, and F1-score 
calculation formulas.

•	 Accuracy: This is quantified as the ratio of the number of 
correct network traffic to the total number of classifica-
tion predictions. 

•	 Precision: This is the proportion of correct classifications 
out of a set of predictions classified as attacks. 

•	 Recall: This is quantified as the proportion of correct 
attack classifications from a given set of attack instances. 

•	 F1-score: This is defined as the harmonic mean of preci-
sion and recall, comprehensively reflecting the effect of 
the model from precision and recall. 

Denote TP, TN, FP, and FN as true positive, true negative, 
false positive, and false negative, respectively.

From (6), precision reflects positive predictive value. 
Higher precision means a lower probability of false posi-
tives. Recall emphasizes the actual positive rate. The higher 
the recall is the lower likelihood of false negatives. As a 
comprehensive indicator, F1-score reflects model precision 

(7)Accuracy =

TP + TN

TP + TN + FP + FN

(8)Precision =

TP

TP + FP

(9)Recall =

TP

TP + FN

(10)F1 - score = 2 ×
Precision × Recall

Precision + Recall
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and recall and is used to evaluate network intrusion detec-
tion experiments. The higher the F1-score, the more types of 
network attacks the model can correctly identify.

5 � Experimental results

We evaluated the multi-class classification performance of 
different methods on three datasets by having the models 
predict whether a sample was normal traffic or one of the 
attack traffic types provided in the dataset (ten classes for 
CSE-CIC-IDS2018, NF-ToN-IoT-v2, and NF-UNSW-NB15-
v2). This section first compared different methods’ weighted 
average classification performance on the test set for all net-
work traffic types. Then, the precision, recall, and F1-score 
of other ways of detecting specific types of network traffic 
were analyzed to evaluate the proposed scheme’s detection 
performance against different attacks.

5.1 � Overall performance analysis

Table 2 shows the accuracy, precision, recall, and F1-score 
of different methods on the test set of CSE-CIC-IDS2018, 
NF-ToN-IoT-v2, and NF-UNSW-NB15-v2. The proposed 
model outperforms other methods in all evaluation met-
rics, followed by BERT, BiLSTM, and LSTM at the low-
est. Compared with BiLSTM-CGAN, the accuracy of the 
proposed method for those three datasets was improved by 
9.553%, 11.771%, and 13.661%, respectively. This is due 
to the self-attention mechanism of BERT, which allows for 
a model of dependencies without regard to the distance of 

features in the input or output sequence [32]. BERT can cap-
ture the intrinsic connection among the network statistical 
features through the self-attention mechanism, even for the 
most distant network traffic statistical features in a sequence. 
The classifier integrated with BERT can obtain more infor-
mation about the attack category from the captured high-
dimensional features, improving classification precision. 
Compared with BERT, BiLSTM and LSTM have a weaker 
ability to pay attention to the global dependencies between 
network statistical features. When faced with a small propor-
tion of attack categories, they need help distinguishing the 
attack types correctly.

The average classification precision of the proposed 
method for different attack types on three datasets reached 
98.247%, 98.805%, and 91.688%, respectively, the high-
est among all schemes. Benefiting from the strong abil-
ity to extract detailed features, the misclassification of the 
proposed method and BERT is significantly less than that 
of LSTM and BiLSTM. The average F1-score of the pro-
posed method for different attack types classification on 
the CSE-CIC-IDS2018 dataset reached 98.230%, which was 
1.218% higher than BERT, and it also exhibited specific 
improvements on the other two datasets, demonstrating that 
the proposed method has improved performance in both 
precision and recall. Compared with BERT, BiLSTM, and 
LSTM, the versions with CGAN boost precision, recall, 
and F1-score. Nevertheless, the proposed method combines 
the strong feature extraction ability of BERT and the strong 
generalization ability of GAN. The advantages of these two 
aspects further reduce misclassification and false negatives 
and improve F1-score.

Table 2   Weighted average 
performance of different 
approaches on three datasets

Dataset Method Accuracy Precision Recall F1-score

CSE-CIC-IDS2018 Proposed 98.218% 98.247% 98.218% 98.230%
BERT 96.828% 97.463% 96.828% 97.012%
BiLSTM-CGAN 88.665% 87.677% 88.665% 86.918%
LSTM-CGAN 88.410% 87.077% 88.410% 86.579%
BiLSTM 86.717% 85.911% 86.717% 85.200%
LSTM 86.070% 86.107% 86.070% 84.386%

NF-ToN-IoT-v2 Proposed 98.797% 98.805% 98.797% 98.799%
BERT 98.566% 98.628% 98.566% 98.584%
BiLSTM-CGAN 87.026% 86.888% 87.026% 86.325%
LSTM-CGAN 86.893% 87.001% 86.893% 86.180%
BiLSTM 86.311% 86.709% 86.311% 85.582%
LSTM 85.888% 86.219% 85.888% 85.020%

NF-UNSW-NB15-v2 Proposed 87.398% 91.688% 87.398% 89.007%
BERT 86.064% 89.271% 86.064% 86.951%
BiLSTM-CGAN 73.737% 76.181% 73.737% 72.631%
LSTM-CGAN 69.381% 70.858% 69.381% 67.597%
BiLSTM 71.599% 73.699% 71.599% 70.538%
LSTM 68.386% 68.336% 68.386% 66.420%
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Figure 5 shows the confusion matrix of the proposed 
method for multi-class detection on these three datasets. 
Most of the samples in the CSE-CIC-IDS2018 and NF-
ToN-IoT-v2 datasets were concentrated on the diagonal 
of the matrix, indicating that almost all types of network 
traffic were correctly identified. For the more category-
imbalanced NF-UNSW-NB15-v2 dataset, the proposed 
method could also successfully detect most of the attack 
types. Notably, within the CSE-CIC-IDS2018 dataset, the 
proposed method achieved a precision of over 95% for 
the DoS attack types - SlowHTTPTest and DoS attacks-
GoldenEye, which account for only about 2% each. There 
are only 90, 36, and 18 samples of Backdoor, MITM, and 
Ransomware attacks in the NF-ToN-IoT-v2 dataset, and 

only 73 and 490 samples of Worms and Shellcode attacks 
in the NF-UNSW-NB15-v2 dataset. The proposed method 
achieved a recall rate of 80% or higher for these types of 
attacks. Our method alleviates the imbalance problem and 
detects various attacks with high accuracy.

5.2 � Precision, recall and F1‑score for different 
attack types

Figures 6, 7 and 8 show the precision, recall, and F1-score 
of different methods, respectively. The proposed method 
has almost the highest precision compared to the other five 
solutions. Each piece of network traffic corresponds to mul-
tiple statistical features, and these statistical features cover 

Fig. 5   Confusion matrix of the proposed method on three datasets
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Fig. 6   Precision for benign and individual attack classes on three datasets
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Fig. 7   Recall for benign and individual attack classes on three datasets



240	 Peer-to-Peer Networking and Applications (2024) 17:227–245

1 3

Fig. 8   F1-scores for benign and individual attack classes on three datasets
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network traffic characteristics information. Each statistical 
feature corresponds to a word with a specific meaning. The 
intrinsic relationship among statistical features is equivalent 
to the contextual relationship in a sentence.

As shown in Fig. 6, for the CSE-CIC-IDS2018 dataset, 
among all ten categories, BiLSTM and LSTM had five 
classes with classification precision more significant than 
80%, including Benign, Bot, DDOS attack-HOIC, DoS 
attacks-Hulk, and SSH-Bruteforce. The first type is the 
benign data with the most significant proportion of the 
test set, and the last four types are the attack types with 
the most data entries in the test set. Since DoS attacks-
GoldenEye and DoS attacks-SlowHTTPTest are the two 
types with the fewest data among all traffic types, they are 
more challenging to identify. The LSTM had less than 55% 
precision for these two types. LSTMs can learn to compen-
sate for the minimum time lag of long discrete time steps 
by enforcing a constant time step [16]. In this way, LSTM 
pays attention to the forward dependencies of network 
traffic features. Due to the forward nature of time series, 
from the perspective of contextual relations, LSTM mainly 
emphasizes the forward dependencies of network traffic 
features, ignoring the backward dependencies. BiLSTM, 
as a bidirectional LSTM, pays attention to the forward and 
backward dependencies of network features, making up for 
the shortcomings of LSTM to a certain extent. BiLSTM 
is composed of bidirectional LSTMs, covering both for-
ward and backward dependencies. Due to the enhanced 
feature-capturing ability, BiLSTM has higher precision in 
identifying network attacks than traditional LSTM. Even 
with the two types of attacks (i.e., DoS attacks-GoldenEye  
and DoS attacks-SlowHTTPTest) with fewer data, the 
detection precisions of BiLSTM hover between 50% and 
60%, still unimpressive. Unlike BERT, based on the self-
attention mechanism, LSTM and BiLSTM suffer from the 
inherent problem of information decay when dealing with 
long sequences. Thus, they are prone to misclassification 
for some types of network attacks with petite proportions 
and complex hidden feature information.

Compared with BiLSTM, the precision of the proposed 
method and BERT in identifying Infilteration attacks in 
the CSE-CIC-IDS2018 dataset increased by 23.391% and 
6.036%, respectively, reaching 84.119% and 66.764%. The 
precision of the proposed method for the remaining cat-
egories was all above 95%. The Ransomware and MITM 
attacks in the NF-ToN-IoT-v2 dataset have only 18 and 36 
samples, respectively, the two attacks with a minor pro-
portion. Compared with BiLSTM, the proposed method 
improved the precision of these two attack types by 52.004% 
and 59.007%, respectively, and the BERT increased by 
44.063% and 27.004%, respectively. In the more imbalanced 
NF-UNSW-NB15-v2 dataset, the proposed method improved 
the precision for the most minor represented attack types, 

Worms and Shellcode, by 41.993% and 35.884%, respec-
tively. In contrast, BERT increased them by 5.936% and 
2.2%, respectively. The BERT model can significantly allevi-
ate the problem that some attack types were previously diffi-
cult to identify, especially the classes with a small proportion.

From Fig. 7, the proposed method and BERT had a 
recall of 94% and above in 9 categories except for Infiltera-
tion in the CSE-CIC-IDS2018 dataset. The recall for ten 
traffic types in the NF-ToN-IoT-v2 dataset was above 90%. 
For the NF-UNSW-NB15-v2 dataset with more unbalanced 
categories, the proposed method and BERT demonstrated 
significant improvements in recall across all traffic types 
compared to BiLSTM and LSTM. Notably, when detect-
ing the least represented Worms and Shellcode attack 
types, both models achieved recall improvements rang-
ing from 6.735% to 44.694%, with both exceeding 80%. 
A notable phenomenon is that the recall rate of the BERT 
model is higher than the precision rate for most network 
attack classes, but the recall rate for the largest Benign 
class is lower than the precision rate. Due to the emphasis 
on checking the attack class, in some cases, BERT may 
classify the Benign class as an attack class. Hence, the 
recall in the Benign class with the most significant pro-
portion is lower than that of some attack classes with a 
small proportion rate. Nevertheless, BERT achieved over 
94% recall for normal traffic on all three datasets, and the 
proposed method further improved Benign recall on CSE-
CIC-IDS2018 by 3.259%.

Figure  8 shows the F1-scores of different methods 
in detecting benign and malicious traffic. The proposed 
method achieves higher F1-scores than baselines for most 
attack categories, especially compared to BiLSTM and 
LSTM. On CSE-CIC-IDS2018, notable improvements are 
observed in detecting DDoS, GoldenEye, SlowHTTPTest, 
FTP-BruteForce, and Infiltration attacks, with 17.85%−

75.73% increases. Similarly, on NF-ToN-IoT-v2, the pro-
posed method excels in detecting Backdoor, DoS, Injection, 
MITM, Password, and Ransomware attacks, improving by 
20.27%−76.99%. On NF-UNSW-NB15-v2, significant gains 
are attained in detecting Backdoor, DoS, Exploits, Fuzz-
ers, Shellcode, and Worms, with 18.40%−56.91% higher 
F1-scores. Many of these attacks have limited samples or 
high concealment.

Although the advantages over standalone BERT are 
reduced, the proposed model still achieves noticeable 
improvements for certain attack types. For highly con-
cealed attacks like Infiltration in CSE-CIC-IDS2018 and 
MITM in NF-ToN-IoT-v2, as well as Worms, Shellcode, 
Backdoor, Analysis and DoS in NF-UNSW-NB15-v2, 
BERT struggles with false positives. In contrast, the 
proposed model increases F1-scores by 8.18% for Infil-
tration, 19.80% for MITM, and up to 40.52% for the 
aforementioned attacks in NF-UNSW-NB15-v2. The 
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integration of BERT and CGAN enables further perfor-
mance gains, especially for previously challenging attack 
types.

The proposed method has improved the detection perfor-
mance. The room for performance improvement becomes 
very limited for categories where F1-score reaches 99%, and 
the value approaches the upper bound. Even with improved 
performance, the contribution to the remaining identifica-
tion classes becomes weak. From Fig. 8, the detection per-
formance for those types with F1-score over 99% is already 
hard to improve. Except for those categories, the proposed 
method achieves a higher F1-score than BERT in the rest 
of the classes, indicating that the proposed method outper-
formed BERT in both precision and recall.

5.3 � Visualization

To gain a more intuitive understanding of the performance 
of the proposed method, we randomly extracted 10000 
samples from the dataset and visualized the classification 
results. BERT maps network traffic to different locations 
in the high-dimensional space according to traffic feature 
information, clarifying the boundaries among different 
types of network traffic. Figure 9 shows the distribution of 
various types of network traffic after the high-dimensional 
space representation extracted by BERT is reduced to two-
dimensional space. From Fig. 9, the boundaries of differ-
ent network traffic categories are relatively straightforward, 
which means the proposed framework can achieve accurate 

Fig. 9   Visualization of high-dimensional spatial representations extracted by BERT on three datasets: Each graph contains 10000 points
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classification. As shown in Fig. 6, the proposed method and 
BERT significantly improved the precision for small-scale 
attack types compared to other methods. For instance, in 
the CSE-CIC-IDS2018 dataset, the proposed method and 
BERT outperformed other methods in detecting Infiltration 
and DoS attacks-GoldenEye type.

Similarly, in the NF-ToN-IoT-v2 dataset, they dem-
onstrated better performance in identifying Ransom-
ware, MITM, and Backdoor attacks. Additionally, in the 
NF-UNSW-NB15-v2 dataset, the proposed method and 
BERT showed notable improvements in detecting Worms 
and Shellcode attacks. The boundaries of these types are 
more explicit in Fig. 9.

In the classification visualization diagram of the 
NF-UNSW-NB15-v2 dataset, categories with unclear bound-
aries were marked by red circles. Analysis, Backdoor, and 
DoS attack types are mixed without clear boundaries. Con-
sidering the confusion matrix on this dataset, some Analysis 
attacks were misclassified as Backdoor and DoS attacks, and 
the same misclassification phenomenon existed for Backdoor 
and DoS attacks. Due to the high similarity and strong con-
cealment of some attack categories in the NF-UNSW-NB15-
v2 dataset, baseline methods such as BiLSTM and LSTM 
are challenging to identify. Although the proposed method 
of BERT-enhanced feature extraction improves the detection 
performance, it still has a high false positive rate.

6 � Conclusion

In this paper, we have proposed a pre-trained language 
model enhanced CGAN for multi-class network intru-
sion detection. The framework leverages CGAN to aug-
ment minority attack data for balancing the training set 
and improving generalization. By embedding BERT in 
the CGAN discriminator, more informative features can 
be extracted to identify network attacks. Through adver-
sarial training, the BERT-enhanced discriminator enables 
the generator to produce higher-quality samples close to 
the actual data distribution, thereby boosting intrusion 
detection performance. Extensive experiments on three 
benchmark datasets demonstrate that the proposed method 
achieves superior overall results compared to baseline 
approaches.

Further analysis reveals that distinguishing attacks 
with similar characteristics or high concealment remains 
challenging, such as Analysis, Backdoor, and DoS in the 
NF-UNSW-NB15-v2 dataset. As large language models pos-
sess robust semantic understanding and generation capabili-
ties, applying them to analyze network traffic data could be a 
promising direction, which we leave for future work.
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