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Task Partitioning and Scheduling Based on
Stochastic Policy Gradient in Mobile Crowdsensing
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Abstract—Deep reinforcement learning (DRL) has become
prevalent for decision-making task assignments in mobile crowd-
sensing (MCS). However, when facing sensing scenarios with
varying numbers of workers or task attributes, existing DRL-
based task assignment schemes fail to generate matching policies
continuously and are susceptible to environmental fluctuations.
To overcome these issues, a twin-delayed deep stochastic policy
gradient (TDDS) approach is presented for balanced and low-
latency MCS task decomposition and parallel subtask allocation.
A masked attention mechanism is incorporated into the policy
network to enable TDDS to adapt to task-attribute and subtask
variations. To enhance environmental adaptability, an off-policy
DRL algorithm incorporating experience replay is developed to
eliminate sample correlation during training. Gumbel-Softmax
sampling is integrated into the twin-delayed deep deterministic
policy gradient (TD3) to support discrete action space decisions
and a customized reward strategy to reduce task completion delay
and balance workloads. Extensive simulation results confirm that
the proposed scheme outperforms mainstream DRL baselines in
terms of environmental adaptability, task completion delay, and
workload balancing.

Index Terms—Attention mechanism, Gumbel-Softmax sam-
pling, mobile crowdsensing (MCS), parallel subtask allocation,
task partition.

I. INTRODUCTION

MOBILE crowdsensing (MCS) technology [1] has be-
come prevalent in recent years due to the rapid prolifer-

ation of intelligent mobile devices with computing, perception,
storage, and communication capabilities. Unlike traditional sen-
sor networks, MCS leverages intelligent devices carried by
mobile users as basic sensing units and forms working groups
to collaboratively complete large-scale data sensing. MCS has
been applied to various fields such as object tracking [2], envi-
ronmental monitoring [3], and smart cities [4].

An MCS system must recruit a large number of workers
to complete the sensing tasks continuously submitted by the
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platform [5], [6]. How task allocation is performed to optimize
the system’s sensing performance is crucial. Task allocation can
be offline or online [7]. The former follows a predetermined
plan for task allocation, which cannot adjust the allocation
strategy in real-time to adapt to environmental dynamics. The
latter can handle task allocation flexibly under dynamic envi-
ronments. Song et al. [8] established an online multiskill task
allocation model and integrated a greedy algorithm to match
dynamic tasks with specific skill workers. Schmitz and Lyk-
ourentzou [9] designed an online-optimized greedy algorithm
for reliable task allocation when the budget and quality cycle
change. However, these works focused on allocation for simple
tasks. The emergence of various MCS applications such as ride-
hailing (e.g., DiDi1), on-demand delivery (e.g., Ele.me2), and
live map (e.g., Waze3) has made it inevitable for MCS systems
to support continuous allocation of complex tasks.

Unlike simple tasks that a worker can complete indepen-
dently, a complex task requires division into multiple subtasks.
These subtasks must then be allocated to several workers for
collaborative completion. In this scenario, any delay in one
subtask can potentially affect the timely completion of the
entire task. Researchers have explored reinforcement learning
(RL) and deep RL (DRL) approaches to decide on multitask
allocation. Xu et al. [10] utilized RL to optimize the allocation
strategy of parallel subtasks. However, RL-based methods face
dimension explosion with the increase of parallel subtasks.
DRL-based schemes can handle high-dimensional action spaces
for parallel subtask allocation. Xu and Song [11] designed
a multiagent DRL algorithm to train a local model for each
worker and obtain parallel allocation actions through multia-
gent cooperation. Ding et al. [12] improved proximal policy
optimization (PPO), solving the unreasonable action-matching
problem caused by spatiotemporal complexity by dynamically
matching tasks, workers, and workplaces. However, most ex-
isting DRL-based task allocations directly or indirectly assume
that the number of tasks or workers is static within a period,
reducing the scheme’s usability.

A. Challenging Issues and Related Works

For DRL-based MCS task allocation in a time-varying envi-
ronment, many challenges remain.

1https://www.didiglobal.com/
2https://www.ele.me
3https://www.waze.com
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1) Dynamics of Parallel Subtasks and Workers: The num-
ber of parallel subtasks divided from a complex task is not
constant due to the tasks’heterogeneity. Xie et al. [13] presented
a multistage complex task decomposition framework that dy-
namically divides tasks according to knowledge-intensive types
and assigns subtasks to suitable service providers. Liu and Zhao
[14] developed a multiattribute E-CARGO task assignment
model based on adaptive heterogeneous residual networks, con-
sidering the heterogeneous workers and tasks. However, these
solutions assume the number of workers is fixed to reduce
model complexity. Sun et al. [15] pointed out that online task
allocation in MCS is dynamic and uncertain. They designed a
spatial perception multiagent Q-learning algorithm for dynamic
spatial task allocation. Liu et al. [16] proposed a distributed
execution framework based on DRL to provide reliable and
accurate sensing services when the number of tasks and vehicles
changes. In [17], a DRL-based algorithm was designed for
scheduling workflow on small time scales for task offloading in
space-air-ground integrated vehicular networks. However, these
methods deal with simple tasks rather than parallel subtasks.
Designing a DRL model for dynamic task division and worker
selection is challenging.

2) Diversity of Task Allocation Environments: Differenti-
ated tasks require MCS systems to provide differentiated system
services. Several studies have proposed multitask allocation
based on DRL to address the challenges of multitask concur-
rency, task and worker heterogeneity, and participant preference
changes. Hang et al. [18] proposed a multiagent DRL-based
multitask allocation to provide differentiated sensing responses.
Considering the complicated and dynamic environment of ve-
hicular computing, Qi et al. presented a DRL-based parallel
task scheduling approach [19], where the output branches of
multitask learning are fine-matched to parallel scheduling. Zhao
et al. [20] designed a similarity function on the task transfer
graph to promote the allocation of personalized multitasks.
The advantage of these on-policy algorithms is that parallel
subpolicies can output personalized allocation decisions, but the
samples they master have a strong correlation, leading to a weak
model generalization and difficulty in service quality guaran-
teeing. Unlike on-policy algorithms that periodically abandon
samples interacting with the environment, off-policy algorithms
design an experience replay pool that stores diversified samples
to enhance the model’s adaptability to differentiated tasks. A
double deep Q-network with a priority experience replay pool
is studied in [21], planning a travel path that meets the require-
ments of each mobile user. Existing deep deterministic policy
gradient (DDPG) [22] and twin delayed deep deterministic
policy gradient (TD3) [23] can also solve task scheduling, but
they operate in continuous action spaces. This is because the
random sampling is not derivable in discrete action spaces, and
the model cannot be trained using backpropagation. Therefore,
exploring an off-policy algorithm in discrete action spaces is
necessary for environment diversity to ensure service stability.

3) Long-Term Balanced Scheduling in Continuous Task
Allocation: Load balancing is important to consider in achiev-
ing long-term optimized task scheduling. Several studies have
proposed DRL-based task allocation, considering the long-term
utility of workers and requesters. Zhao et al. [24] proposed

a discrete threshold task allocation algorithm based on policy
gradient considering long-term utility, significantly improving
the long-term continuous task allocation utility. In [25], a mul-
tiagent DRL solution was proposed to generate a multitask
allocation strategy that considers the long-term interests of
workers and requesters. This scheme designs a reward function
that considers local and global returns to balance short-term
and long-term benefits and achieve a long-term equilibrium
task completion rate. Ma et al. [26] proposed a real-time task
dynamic scheduling model based on centralized learning, which
makes more accurate continuous task scheduling decisions by
analyzing the processor load of workers. The system’s load bal-
ance is better than random task allocation methods, improving
CPU utilization and service quality. However, these methods
do not incorporate balance indicators into the DRL reward
function, making it difficult for the model to learn to schedule
experience that satisfies long-term load balancing.

B. Contributions and Organization

In response to the above issues, we proposed a twin delayed
deep stochastic policy gradient (TDDS) approach for long-
term balanced and low-latency task allocation via dynamic
partitioning and scheduling. The main contributions include
the following.

1) We construct a scalable policy network consisting of two
shared linear layers to extract state features of subtasks
and workers, along with a masked attention mechanism to
match subtasks and workers. This network can indepen-
dently infer an optimal subpolicy for each subtask, with
enhanced robustness of task allocation.

2) An off-policy algorithm based on TD3 is designed, which
uses Gumbel-Softmax sampling to enable TD3 to output
allocation decisions of parallel subtasks in discrete action
spaces. The rich samples in the experience replay pool
can enhance model generalization to adapt to heteroge-
neous MCS environments.

3) We develop an appropriate reward function considering
completion delay and load balancing. This encourages the
model to learn from allocation experiences that optimize
both indicators simultaneously, ensuring the long-term
stability of task scheduling. Simulation results demon-
strated that the proposed approach’s task completion de-
lay and environmental adaptability are better than typical
DRL-based baselines.

The rest of this article is organized as follows. Section II
presents the system model for MCS task partition and paral-
lel subtask allocation. Section III proposes a parallel subtask
allocation scheme based on TDDS. Section IV analyzes the
evaluation results under simulation experiments. Finally, we
summarize the research work in Section V. The main notations
and variables are listed in Table I.

II. SYSTEM MODEL

This section begins with an overview of MCS task par-
titioning and continuous subtask assignment. Then, the task
partitioning and assignment are transformed into a long-term
optimization problem.
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TABLE I
MAIN NOTATIONS AND VARIABLES

Symbols Definition

at,i,m,n Allocation strategy for task i in time window t
It Set of tasks in time window t

Li,n
Set of incomplete subtasks for worker n
upon receiving Ui,n

M Maximum number of task subdivision
Mi Set of subtasks in state i
Mt,i/Mt,i Set/Num. of subtasks for task i in time window t
N Maximum number of workers
Ni Set of workers in state i
Nt/Nt Set/Num. of workers in time window t
T /T Set/Num. of time windows
Ui,n/Ui,n Set/Num. of task i’subtasks allocated to worker n
ui,n[j] The jth subtask executed in Ui,n

wi,n[j]
Delay from receiving Ui,n

to the start of transmission of ui,n[j]

zsen
i,n/ztra

i,n
Sensing/transmission time for worker n
from receiving Ui,n to completing Li,n

zsen
t,i,n/ztra

t,i,n The value of zsen
i,n/ztra

i,n in time window t

Fig. 1. Consecutive MCS task allocation.

A. System Overview

Fig. 1 illustrates an MCS system comprising a control plat-
form, task requesters, and workers. As a dispatch center, the
control platform connects the task requesters and workers via
base stations. Requesters create tasks that require environmental
sensing, and workers with different sensing and computing
abilities cooperate to complete them. It assigns a continuous

Fig. 2. Completion delay of two subtasks under FIFO.

stream of tasks to a group of workers following the first-in-first-
out (FIFO) rule. Each task is divided into parallel subtasks, and
the control platform employs DRL to select the most suitable
workers to complete these subtasks, taking into account the
resource competition among the subtasks.

B. Task Completion Latency Model

We now explain the allocation and execution of parallel sub-
tasks and model the completion latency. Let Ui,n denote the set
of subtasks for task i allocated to worker n, andUi,n indicate the
total count of these subtasks. A worker movement minimization
method [27] is used to determine the execution order of subtasks
in Ui,n. Let ui,n[j] represent the jth subtask executed in Ui,n,
and oi,n[j] represent the size of ui,n[j]. li,n[j] refers to the
location of ui,n[j], which specifies the initial location of worker
n prior to commencing Ui,n, with li,n[0] = li−1,n[Ui−1,n]. It is
assumed that the movement, sensing, and transmission rates of
worker n are vmov

n , vsen
n , and vtra

n , respectively, and their latency
expressions are represented as dmov

i,n [j], dsen
i,n[j], and dtra

i,n[j]

⎧
⎪⎪⎨

⎪⎪⎩

dmov
i,n [j] = |li,n[j]− li,n[j − 1]|/vmov

n

dsen
i,n[j] = oi,n[j]/v

sen
n

dtra
i,n[j] = oi,n[j]/v

tra
n .

(1)

Fig. 2 explains the process of worker n executing the sub-
tasks in Ui,n when Ui,n contains two subtasks, and this can be
extended to the general case. Assume Li,n is a set of subtasks
that worker n has not yet after Ui,n arrives, with the remaining
sensing and transmission delays being zsen

i,n and ztra
i,n, respec-

tively. After completing the sensing of Li,n, worker n moves
to li,n[1] to start executing subtasks in Ui,n in sequence. Note
that the delivery of a subtask must wait until the sensing of this
subtask is completed and the transmission of all other subtasks
before this subtask is finished before it can be executed. We
define wi,n[j] as the delay from receiving Ui,n to the start of
transmission of ui,n[j]. The recursive expression for wi,n[j] is
given by (2), shown at the bottom of the page.

wi,n[j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max {zsen
i,n + dmov

i,n [1] + dsen
i,n[1], z

tra
i,n}, if j = 1

max

⎧
⎨

⎩
zsen
i,n +

j∑

j′=1

(dmov
i,n [j′] + dsen

i,n[j
′]), wi,n[j − 1] + dtra

i,n[j − 1]

⎫
⎬

⎭
, otherwise.

(2)
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Based on wi,n[j], the latency of completing all subtasks
in Ui,n is wi,n[Ui,n] + dtra

i,n[Ui,n]. Since parallel subtasks are
allocated to multiple workers for processing, the completion
latency of task i is

di = max
n

{wi,n[Ui,n] + dtra
i,n[Ui,n]}. (3)

C. Problem Formulation

In time window t, the group of workers is denoted as Nt, with
Nt being its cardinality. A good allocation strategy should make
the sensing queue lengths of workers similar to the balanced
network load. We relabel zsen

i,n in the following equation as zsen
t,i,n,

and define the balance index of task allocation as

ϕt,i �

√
√
√
√ 1

Nt

∑

n∈Nt

(

zsen
t,i,n − 1

Nt

∑

n∈Nt

zsen
t,i,n

)2

. (4)

The smaller ϕt,i is, the higher the balance of task allocation.
To evaluate the long-term task allocation in a time-varying

environment, the set of time windows is defined as T , with
T being its cardinality. The set of tasks in window t ∈ T is
denoted as It, with It as its cardinality, and the set of subtasks
into which task i is divided is Mt,i. Let at,i,m,n = 1 indicate
that subtask m ∈Mt,i is assigned to worker n; otherwise,
at,i,m,n = 0. Assuming that the completion delay of task i in
window t is dt,i, the task partitioning and continuous parallel
subtask assignment are transformed into the following long-
term optimization problem

P1 :min lim
T→∞

1
T

∑

t∈T
(ζE(dt,i) + (1 − ζ)E(ϕt,i))

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

n∈Nt

at,i,m,n = 1, ∀t ∈ T , i ∈ It,m ∈Mt,i, n ∈Nt

(5a)

at,i,m,n ∈ {0, 1}, ∀t ∈ T , i ∈ It,m ∈Mt,i, n ∈Nt

(5b)

where ζ is a weight parameter. Constraint (5a) states that one
subtask is assigned to only one worker, and (5b) consists of the
0-1 decision of subtask assignment.

III. PROPOSED SOLUTION

The DRL approach that supports continuous parallel subtask
allocation is used to solve problem P1. The MCS platform
is abstracted as an agent, interacting with the environment at
discrete time steps. During the ith interaction with the environ-
ment, the agent obtains an action ai according to the environ-
ment state si and policy πφ. Then, the environment transitions
to the next state si+1 according to the action ai, and returns
a reward ri. The state space, action space, and reward are
described as follows.

1) State Space. To unify input tensors’ dimensions, the num-
ber of parallel subtasks is set not to exceed M . When the
number is less than M , the state of all missing subtasks
is filled with 0. Similarly, When the number of workers
is less than N , the state of all missing workers is also
filled with 0. The state of subtask m is represented by

ŝi,m = (li,m, oi,m), where li,m and oi,m represent the
location and size of subtask m, respectively. The state of
task i is represented by the combination of the states of
M subtasks

stask
i = (ŝi,1, . . . , ŝi,M ). (6)

The state of worker n is represented by s̃i,n = (vmov
n ,

vsen
n , vtra

n , li,n[0], zsen
i,n, z

tra
i,n). Similarly, the state of N

workers is represented by

sworker
i = (s̃i,1, . . . , s̃i,N ). (7)

Finally, the system state is composed by concatenating
the task state and the worker state

si = (stask
i , sworker

i ). (8)

2) Action Space. Let Mi and Ni denote the sets of subtasks
and workers at state si, respectively. The action space
dimension of assigning Mi to Ni is at most NM . If the
number of output layer neurons of the policy network of
DRL is set to NM , the high-dimensional action space will
make the learning difficult to converge. For this reason,
the allocation decision of M subtasks is decomposed into
M subdecisions, and the number of output layer neu-
rons of the policy network of DRL is reduced to M ·N .
For each subdecision, the action space is {1, 2, . . . , N},
where nmeans that a certain subtask is assigned to worker
n. The actions corresponding to the missing subtasks are
ignored if the number of subtasks is less than M . Thus,
the output action ai represents assigning the M subtasks
of task i to the N workers.

3) Reward Function. During DRL training, we give an im-
mediate reward value ri = r(si, ai) that evaluates the
merits of the selected action. The goal of task allocation
is to minimize the task completion delay and balance
variance, while the goal of DRL is to maximize the long-
term reward, so the reward function is defined as

ri =
σ1 − (ζdi + (1 − ζ)ϕi)

σ2
(9)

where ϕi represents the balance index of task i allocation,
and the parameters σ1 and σ2 are used to control the range
of di and ϕi for the sake of DRL training.

The agent interacts with the environment and generates a
sampling trajectory ς = {s1, a1, r1, . . . , si, ai, ri, . . .} by policy
π based on (8) and (9). The optimal allocation policy can
be solved by maximizing the expected return of the sampling
trajectory, expressed as

π∗ = max
π

J (π) = Eς∼π

⎛

⎝
∑

i≥0

γiri+1

⎞

⎠ (10)

where γ is a discount factor.
Most studies use DRL of on-policy strategies such as asyn-

chronous advantage actor–critic (A3C) [28] and PPO in task
allocation [29]. Although on-policy strategies are suitable for
environments where data is continuously generated, they are
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Fig. 3. TDDS model structure.

Fig. 4. Policy network for multiple subtasks.

susceptible to noise and may quickly need to remember previ-
ously learned information. The off-policy strategy shows more
significant advantages in diverse environments by utilizing an
experience pool to store and reuse past data, as it can learn from
historical data with enhanced adaptability. TD3 is a scheduling
algorithm used in continuous control. It adopts an off-policy
strategy and can effectively alleviate the overestimation and
high variance of the expected long-term return of a state or state-
action pairs. This motivates us to apply it to parallel subtask al-
location. However, converting TD3 from continuous to discrete
control remains challenging.

To address this issue, we construct a twin delayed deep
stochastic policy gradient (TDDS) model based on TD3, which
uses two critic networks Qθ1 and Qθ2 and two target critic
networks Qθ′

1
and Qθ′

2
with multilayer perceptron (MLP) archi-

tectures, as shown in Fig. 3. Moreover, we created an experience
replay pool to enable TDDS to store samples collected by
interacting with the environment.

A. Policy Network Design

Considering the inconsistent action space dimensions due
to dynamic task divisions, we design the policy network πφ

and the target policy network πφ′ in Fig. 4 with a linear layer

and an attention aggregation layer. The policy network takes
the sampled state si as input and passes M subtask states
(ŝi,1, . . . , ŝi,M ) through linear layer 1 to obtain M queries
{qi,m} of dimension D. Similarly, it passes N worker states
(s̃i,1, . . . , s̃i,N ) through linear layer 2 to obtain N keys keyi,n

of dimension D. The attention score for qi,m and keyi,n is
calculated as

ωi,m,n =

⎧
⎨

⎩

qi,m · keyi,n√
D

, if m ∈Mi, n ∈Ni

−∞, otherwise.
(11)

The attention weight of query m selecting key n is deter-
mined as

αi,m,n =
exp (ωi,m,n)

∑
n∈N exp (ωi,m,n)

. (12)

The larger the value of αi,m,n, the higher the matching degree
between subtask m and worker n. Denote the action distribution
of subpolicy m as πφ,m(·|si) = (αi,m,1, . . . , αi,m,N ), then the
output of policy network πφ is M subpolicies paired with
M subtasks {πφ,m(·|si)}. The attention aggregation layer can
perceive the resource competition among parallel subtasks and
learn how to map the state of associating one subtask with N
workers to the subpolicy. Benefiting from the masked attention
mechanism, the missing subtasks or workers used for padding
do not affect policy network update [30].

B. Gumbel-Softmax Sampling

TDDS adapts TD3, which originally operates in the con-
tinuous action space, to work in the discrete action space by
applying Gumbel-Softmax sampling. Suppose the action prob-
ability vector pi,m = (pi,m,1, . . . , pi,m,N ) output by the subpol-
icy network m under the state si satisfies

∑
n∈N pi,m,n = 1.

The common Gumbel-Max [31] is used to sample the discrete
probability distribution pi,m and one-hot vector encoding is
used to represent the sampled action as

F (pi,m) = one_hot( arg max
n

(gi,m,n + log pi,m,n)) (13)

where gi,m,n ∼ Gumbel(0, 1). Because (13) is not differen-
tiable concerning pi,m, so backpropagation cannot be used to
update network parameters. The continuous Softmax function

ei,m,n =
exp ((gi,m,n + log pi,m,n)/τ)

∑
n∈N exp ((gi,m,n + log pi,m,n)/τ)

(14)

is used to approximate (13), obtaining a differentiable Gumbel-
Softmax sampling

G(pi,m) = (ei,m,1, . . . , ei,m,N ). (15)

In (14), τ is the temperature coefficient used to control the
degree of approximation of G(pi,m) to F (pi,m). To describe
the allocation of multiple subtasks, we use p= (p1, . . . , pM )
to denote a multidimensional probability distribution, and use
G(p) = (G(p1), . . . , G(pM )) to denote the Gumbel-Softmax
sampling of p.
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C. Model Update Strategy

The agent uses the policy network, πφ, to interact with the
environment and obtain samples (si, ai, ri, si+1) to fill the ex-
perience replay pool (see step ©1 in Fig. 3). Let s′k represent the
next state of sk. Let B represent the set of random indices for B
samples in the experience replay pool. When there are enough
samples in the experience replay pool, the agent will randomly
sample B tuples

⋃
k∈B (sk, ak, rk, s

′
k), and inputs s′k to target

policy network πφ′ to obtain the action probabilities of M sub-

policies πφ′(·|s′k)
Δ
= (πφ′,1(·|s′k), . . . , πφ′,M (·|s′k)). Each sub-

policy of πφ′(·|s′k) is sampled to obtain a concatenated action

vector ãk
Δ
= (ãk,1, . . . , ãk,M ). Then ãk and s′k are input intoQθ′

1

and Qθ′
2

respectively to obtain two temporal-difference targets
ŷk,1 and ŷk,2 as

ŷk,l = rk + γQθ′
h
(s′k, ãk), h ∈ {1, 2}. (16)

Let ŷk = min (ŷk,1, ŷk,2) and it can be regarded as the target
value of the critic networks. Mean square error (MSE) was used
to establish the loss functions of critic networks Qθ1 and Qθ2 ,
expressed as

lossh =
1
B

∑

k∈B
(ŷk −Qθh(sk, ak))

2
, h ∈ {1, 2}. (17)

Then the Nadam optimizer updates Qθ1 and Qθ2 by using the
gradient of loss1 and loss1 with respect to θ1 and θ2, respectively
(see step ©2 in Fig. 3). After the critic networks, Qθ1 and Qθ2 ,
are updated c times, the agent updates policy network πφ once
to ensure model training stability (see step ©3 in Fig. 3).

According to the deterministic policy gradient (DPG) theo-
rem [32], the policy gradient of the expected return in (10) is
expressed as

∇φJ (φ) = Es∼ρπφ ,a∼πφ(·|s)[∇φQ
πφ(s, a)]

≈ 1
B

∑

k∈B
∇φQ

πφ(sk, ak)

=
1
B

∑

k∈B
∇ak

Qπφ(sk, ak)∇φG(πφ(·|sk))

=
1
B

∑

k∈B
∇ak

Qπφ(sk, ak)∇pG(p)∇φπφ(·|sk) (18)

where ρπφ denotes the discounted state distribution [32], Qπφ

represents the state-action value function based on policy πφ.
In (18), G(πφ(·|sk)) approximates a one-hot vector, which con-
forms to the discrete action form. To solve ∇φJ (φ), TD3 uses
Qθ1 instead of Qπφ to ensure the differentiability with respect
to ak. Value function Qπφ can be estimated by value network
Qθ1 or Qθ2 . Since the two networks are equivalent, the mean of
the two is used to approximate the policy gradient. Accordingly,
Qπφ(sk, ak) is approximated as

Qπφ(sk, ak) =
1
2
(Qθ1(sk, ak) +Qθ2(sk, ak)) (19)

and ∇φJ (φ) is used by Nadam optimizer to update policy
network πφ. After updating πφ, the parameters of target critic

Algorithm 1: TDDS-Based Parallel Subtask Allocation
Input: Sampling batch B, soft update factor β,

discount factor γ, policy network update period
c, maximum training rounds max_epochs

Output: Policy network πφ for task allocation
1 Initialize critic networks Qθ1 , Qθ2 as θ1, θ2, initialize the

parameters of policy network πφ as φ, assign target
network as θ′1 ← θ1, θ

′
2 ← θ2, φ

′ ← φ;
2 for epoch = 1 to max_epochs do
3 Get the initial system state s1;
4 i← 1;
5 while si is not the terminated state do
6 Select action ai ∼ πφ(·|si) according to the

current policy πφ;
7 Execute action ai, calculate reward ri, system

transitions to the next state si+1;
8 Put (si, ai, ri, si+1) into experience replay pool;
9 i← i+ 1;

10 Sample B tuples from the experience replay pool;
11 Calculate the temporal-difference targets ŷk,1 and

ŷk,2 according to (16);
12 ŷk ←min(ŷk,1, ŷk,2);
13 Calculate loss1 and loss2 according to (17);
14 Update the critic networks;
15 if epoch mod c= 0 then
16 Calculate ∇φJ (φ) according to (18);
17 Update the policy network;
18 Update the target networks according to (20);

19 return πφ

networks Qθ′
2
, Qθ′

2
and target policy network πφ′ are updated

by (see step ©4 in Fig. 3)

θ′h ← (1 − β)θ′h + βθh, h ∈ {1, 2}
φ′ ← (1 − β)φ′ + βφ (20)

where β � 1 is the soft update factor.
The execution of TDDS-based parallel subtask allocation is

summarized as Algorithm 1. Initially, the parameters of the
critic networks and policy network are randomly initialized and
assigned to the corresponding target network (line 1). The agent
then periodically interacts with the environment, collecting a
variety of samples to populate the experience replay pool (lines
3–9) and updates the critic networks depending on minimizing
the loss function at each time window (lines 10–14). Whenever
the critic networks update c times, the policy network is up-
dated by using the policy gradient (lines 15–17), and the target
networks are updated simultaneously (line 18). This process is
repeated until the TDDS training converges.

IV. PERFORMANCE EVALUATION

PyTorch was used as the deep learning framework to imple-
ment the proposed solution. The crowdsensing area was set to 2
× 2 km. The inter-arrival time of tasks (in minutes) follows an
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TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value

Discount factor (γ) 0.8
Soft update factor (β) 0.005
Temperature coefficient (τ ) 0.5
Objective function weight parameter (ζ) 0.75
Reward function parameters (σ1,σ2) 56, 29
Policy network update cycle (c) 8

exponential distribution with the rate parameter λ. The platform
divided a task into one to eight subtasks, each with a size rang-
ing from 0.5 to 1 GB. The number of workers varied between 8
and 16. The sensing rate (GB/min), transmission rate (GB/min),
and movement rate (km/min) varied in the ranges of [0.1,0.2],
[0.09,0.21], and [0.3,0.6], respectively. The experience replay
pool capacity was set to 100 000. The number of policy network
linear layer dimensions, D, was set to 1000. The critic networks
used a 264×1000×1 MLP with Prelu as the activation function.
Other simulation parameters are given in Table II.

For comprehensive comparison and verification, three base-
line approaches were selected and designed as follows.

1) Random assignment (RA) [33]: The agent randomly as-
signs one worker for each subtask.

2) PPO [34]: The agent uses PPO to perform task partition
and allocation, where the policy network depends on an
MLP to generate parallel subpolicies.

3) Independent deep Q-network (IDQN) [35]: Multiple
agents perform parallel subtask allocation, where each
agent uses one Q-network to allocate each subtask.

A. Convergence Analysis

The first experiments evaluated the convergence of TDDS
under different learning rates by calculating the average cumu-
lative reward of the policy network over multiple time windows.
Sampling larger batches of tuples from the experience replay
pool can ensure learning stability [36]. We set the sampling
batch B = 4096 first.

The Nadam optimizers for critic and policy networks have
the same learning rate, denoted as η. As shown in Fig. 5(a),
when η = 0.025, the convergence curve of TDDS showed large
oscillations, and the policy network converged to stability after
340 updates; when η = 0.001, the average cumulative reward
converged slowly to 73. This showed that large or small η
affected the convergence of TDDS. When η was set to 0.01
and 0.005, respectively, TDDS could balance the convergence
speed and stability, and the average cumulative reward could
stabilize at around 77 after 300 updates. Thus, the subsequent
experiments all took η = 0.01.

Fig. 5(b) tested the effect of B on the convergence of TDDS
when η = 0.01. In the case of B = 512, small batch sampling
made the gradient estimation inaccurate and led to slow con-
vergence speed and the convergence value was only around 64.
Increasing B to 1024 and 2048, respectively, TDDS accelerated
the convergence speed, but the convergence curve had slight
fluctuations after reaching stability. The convergence curve of

B = 4096 was close to that of B = 8192 after 170 updates. This
reflected that increasing the sampling batch to a large number
might not necessarily improve the convergence of TDDS and
might even increase model training cost. Hence, the subsequent
experiments all took B = 4096.

To evaluate the convergence of TDDS in detail, we extracted
multiple variables in training. Because the loss of the two critic
networks was almost the same, only loss1 is given. Fig. 6(a)
demonstrates that the loss1 curve converges steadily, proving
that the critic networks can accurately predict the expected
return after training, providing a solid foundation for updating
the policy network. In Fig. 6(b), the expected return curve rose
steadily, indicating that the policy network was gradually opti-
mized. In Fig. 6(c), the policy entropy [37] gradually decreased
from 2.5, reflecting that the agent’s exploratory gradually de-
creased and gradually tended to be stable.

B. Adaptability Analysis

Multiple indicators are extracted to evaluate the allocation
driven by TDDS. We took T = 30 000 for all subsequent eval-
uations to evaluate the applicability to different environments.
Fig. 7(a) shows that the expected task completion delay E(dt,i)
of TDDS was 44%, 65%, and 70% of RA, PPO, and IDQN,
respectively. Let ztra

i,n,t be the value of ztra
i,n in time window t.

Fig. 7(b) and 7(c) show the expected length of sensing and
transmission queue E(zsen

t,i,n), E(z
tra
t,i,n) were both smaller than

the other three algorithms. This indicated that TDDS effectively
reduced the queuing cost in executing subtasks. At the same
time, in Fig. 7(d), the expected movement distance to complete
a task of TDDS was 0.16 km, while RA, PPO, and IDQN were
all larger than 0.37 km. This meant that TDDS could achieve
the optimal matching according to the spatial information of
subtasks and workers and had stronger environmental adapt-
ability. In Fig. 7(e), the expected balance, E(ϕt,i), of TDDS
was much smaller than RA and 72% and 81% of PPO and
IDQN respectively, so TDDS can provide a low-load scheduling
strategy. The above experimental results show that the five
indicators yielded consistent outcomes. Accordingly, we used
the objective value of P1 as a simple and effective criterion to
evaluate the following simulations.

C. Impact of Task Attributes

When evaluating the average impact of a certain quantity
on the objective value under different environments, we fix
this quantity in all test environments and keep the rest of the
variables taking values under the original distribution.

This group of experiments first considered the impact of task
reaching intensity in each time window on objective value.
The task inter-arrival time followed an exponential distribution
with λ, so the higher the λ, the higher the task arrival rate,
the more subtasks accumulated by workers, and the objective
value showed a rapid upward trend, as shown in Fig. 8(a). When
λ= 1, IDQN, PPO, and RA found it difficult to cope with the
densely arriving tasks, and their objective values were 138, 127,
and 151, respectively, while TDDS was only 94. In addition,
when λ= (1/5), the task arrival time interval was longer, so
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(a) (b)

Fig. 5. Convergence curves of TDDS. (a) Convergence curves with varying learning rate. (b) Convergence curves with varying batch size.

(a) (b) (c)

Fig. 6. Variation of loss1, J (φ) and policy entropy. (a) Variation of loss1. (b) Variation of J (φ). (c) Variation of policy entropy.

(a) (b) (c) (d) (e)

Fig. 7. Comprehensive analysis of task allocation. (a) Comparison of E(dt,i). (b) Comparison of E(zsen
t,i,n). (c) Comparison of E(ztra

t,i,n). (d) Comparison
of moving. (e) Comparison of E(ϕt,i).

the workers had relatively sufficient time to complete each
subtask, and the objective values of the four algorithms were
all small.

The impact of the number of tasks in each time window It
variation on objective value was considered. When the number
of tasks in the time window increased, the cumulative effect

caused the unprocessed subtasks to accumulate continuously,
affecting the completion delay of the subsequent arrival tasks.
When λ= (2/7), Fig. 8(b) shows the growth trend of the objec-
tive value of the four algorithms under varying task numbers,
where TDDS still had the optimal allocation, and its delay
growth rate was 36%. When It = 500, the objective values
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(a) (b) (c) (d)

Fig. 8. Impact of task properties on objective value. (a) Impact of λ. (b) Impact of It. (c) Impact of Mt,i. (d) Impact of oi,m.

(a) (b) (c) (d)

Fig. 9. Impact of worker properties on objective value. (a) Impact of Nt. (b) Impact of vsen
n . (c) Impact of vmov

n . (d) Impact of vtra
n .

of RA, IDQN, and PPO were 132, 68, and 65, respectively,
while TDDS was 33. Facing the long-term high demand of task
requesters, TDDS provided the highest service quality.

Let Mt,i be the number of subtasks from task i in time
window t. As shown in Fig. 8(c), as the number of subtasks
Mt,i divided by each task gradually increased, the objective
values of all algorithms showed an upward trend, but TDDS
rose the slowest, and the maximum objective value was 104.
When Mt,i ∈ [1, 2], the low-difficulty allocation work made the
task completion situation of each algorithm similar. However,
the objective value of TDDS increased by 86 whenMt,i ∈ [3, 8],
while the other three algorithms were all over 155. Among
them, IDQN was most affected by subtask number variation,
and the objective value increased by 180. This was because, in
IDQN, each agent tended to assign subtasks to workers with
strong abilities, which might have caused most of the subtasks
to be assigned to the same worker, thus delaying the completion
of the entire task. Especially when Mt,i was large, the objective
value of IDQN was close to RA.

From Fig. 8(d), the objective value was positively correlated
with subtask size. Randomly assigning subtasks increased the
difficulty of low-ability workers in handling complex tasks, so
RA’s objective value was much higher than PPO, IDQN, and
TDDS. PPO and IDQN output subtask allocation strategies that
could usually match subtasks and workers well, so the objective
value was significantly lower than RA. TDDS’s attention aggre-
gation layer further enhanced the matching degree of subtasks
and workers, and its objective value was 43%–50%, 67%–74%,
and 70%–77% of RA, PPO, and IDQN, respectively, when
oi,m ∈ [0.5, 1].

D. Impact of Worker Attributes

As shown in Fig. 9(a), the gradually increasing workers could
share more subtasks, so the objective values of the four algo-
rithms all dropped rapidly. However, TDDS achieved the lowest
objective value by using a more optimal allocation strategy,
which was about 26-67 and 5-18 less than the three algorithms
when there were 8 and 16 workers, respectively. This showed
that TDDS had obvious advantages under different numbers
of workers.

The sensing rate vsen
n was limited by the ability of sens-

ing devices carried by workers. For example, sensing devices
with high-definition cameras and GPU chips could sense high-
quality data faster. Fig. 9(b) shows that the faster sensing rate
promoted the task completion speed of the four algorithms. At
the same sensing rate, the objective value of TDDS was much
smaller than the other three algorithms. For example, when
vsen
n = 0.1, the objective values of IDQN, PPO, and RA were

84, 82, and 110, respectively, while TDDS was only 58. On
the other hand, the speed of worker movement also affected
the allocation.

In Fig. 9(c), the faster-moving workers reach the subtask
location earlier, which helps reduce the objective value. TDDS’s
curve was relatively flat, unlike the other three algorithms’ fluc-
tuating curves. When vmov

n increased from 0.3 to 0.6, the change
in the objective value of TDDS was 6, while IDQN, PPO, and
RA were 20, 19, and 28, respectively. This is because TDDS’s
average movement distance of workers was short, which re-
duced the movement delay.

Workers could transmit data while sensing and moving, so
data transmission did not affect the sensing of the next subtask.
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Fig. 10. Convergence curves of different models.

In Fig. 9(d), the objective values of the four algorithms did not
change much due to the increase of transmission rate when
vtra
n ≥ 0.14, and TDDS still had the lowest objective value,

which was about 62%–69% of IDQN and PPO. Fig. 9 showed
that TDDS can adapt to the changes in worker attributes and
continuously output better online allocation strategies than the
other three algorithms.

E. Ablation Experiments

To verify the effectiveness of TDDS, two task allocation
models were set up for ablation experiments.

1) TDDS-SF: The policy network uses the score function
estimator (SF) to calculate gradient instead of Gumbel-
Softmax sampling. In this case, the policy gradient
changes according to (21), shown at the bottom of
the page.

2) TDDS-MLP: The policy network does not use the at-
tention mechanism but relies on an MLP to output
eight subpolicies, with the structure as 136 × 500 ×
500 × 128.

In Fig. 10, the average cumulative rewards of TDDS-SF and
TDDS-MLP after convergence were 62 and 58, respectively,
lower than the 77 of TDDS. At the same time, the MLP of
TDDS-MLP did not easily capture the correlation between sub-
tasks and workers, which made the curve fluctuate greatly, so
the model stability needed to be improved.

From Fig. 11, the probability density curves of objective
value for the three models within 30 000-time windows indi-
cated that the objective values of TDDS-SF, TDDS-MLP, and
TDDS were around 34, 36, and 26, with TDDS having the
narrowest curve width. The mean and variance of each curve
demonstrated that TDDS performs an optimal allocation.

Fig. 11. Probability density of objective values.

To further verify the advantages of TDDS, we compared the
task allocation performance of the three models under different
environmental states. As shown in Fig. 12(a), the objective
value range of the three models was similar (between 11 and
24) when Mt,i ∈ [1, 3]. However, when the number of subtasks
increased to 8, the objective value of TDDS-MLP rose to 155,
which was 37 and 62 higher than that of TDDS-SF and TDDS,
respectively. The effect of Nt on the objective values of the
three models is illustrated in Fig. 12(b). As Nt increased, the
objective values of the three models decreased rapidly. How-
ever, TDDS outperformed TDDS-SF and TDDS-MLP in all
cases. WhenNt ∈ [8, 11], TDDS-SF had a lower objective value
than TDDS-MLP, but still 10–19 higher than TDDS. When
Nt ∈ [12, 16], the objective values of TDDS-MLP and TDDS-
SF were similar (about 26–35) but 5–9 higher than TDDS.
Fig. 12(c) shows the impact of It on the objective values. With
the increase of It, the objective values of the three models
also increased rapidly. However, TDDS had a lower objective
value than TDDS-SF and TDDS-MLP in all scenarios. When
It = 500, TDDS had a 36% and 48% lower objective value than
TDDS-SF and TDDS-MLP.

The results in Fig. 12 demonstrate that using the score func-
tion estimator SF instead of Gumbel-Softmax sampling leads to
inaccurate calculation of the policy network gradient, and using
MLP instead of the attention mechanism fails to capture the
correlation between subtasks and workers. As a result, TDDS-
SF and TDDS-MLP’s policy networks cannot optimally match
subtasks and workers, which results in significantly higher ob-
jective values than TDDS under different environmental states.
The proposed task allocation model used Gumbel-Softmax
sampling and attention mechanism to help the policy network
generate allocation strategies, with which the MCS system can

∇φJ(φ)≈
1
B

∑

k∈B

(

Qπφ(sk, (ãk,1, . . . , ãk,M ))∇φ log
M∏

m=1

πφ,m(·|sk)
)

. (21)
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(a) (b) (c)

Fig. 12. Impact of worker and task’s properties on objective value. (a) Impact of Mt,i. (b) Impact of Nt. (c) Impact of It.

meet task needs in a more timely manner while balancing the
load for workers.

V. CONCLUSION

We have presented a TDDS-based approach for continuous
parallel subtask assignment in MCS. The policy network in
TDDS uses shared linear layers to reduce network parameters
and introduces a masked attention mechanism to match the
dynamically changing number of subtasks and workers. Con-
sidering that off-policy DRL has high sample utilization and
good generalization, we introduce Gumbel-Softmax sampling
so that the off-policy TD3 algorithm can be applied to dis-
crete action spaces, and the feasibility of the proposed algo-
rithm is proved through convergence analysis. Compared with
mainstream DRL baseline algorithms, TDDS shortens the task
completion delay by 30%–56% while balancing the load and
reducing workers’ movement distance. Regarding adapting to
the dynamics of tasks and workers, TDDS performs more stably
and is less affected by environmental fluctuations than other
baseline algorithms. Ablation studies verify the effectiveness
of masked attention and Gumbel-Softmax in TDDS.

When tasks arrive intensively, previous tasks’ allocation sig-
nificantly impacts subsequent tasks’ allocation, and this ap-
proach may not achieve global optimality. If the offline method
is integrated into online assignments, we can assign tasks after
receiving multiple tasks and improve allocation efficiency by
controlling when to perform task assignments, which is our
follow-up research direction.
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