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Abstract— Multi-object detection in autonomous driving faces
challenges due to multi-scale entities, diverse streetscapes, and
limited computational resources. To address these challenges,
we present MT-DyNN, a Multi-Teacher knowledge-distilled
Dynamic Neural Network framework for instance-adaptive
detection, optimizing detection accuracy and inference cost in
autonomous driving. The framework’s student network com-
prises a customizable multi-branch residual detection network
and a lightweight policy network. The former efficiently extracts
multi-scale features in parallel without altering receptive fields,
while the latter, depending on curriculum learning, captures
task-relevant features and dynamically generates routing vec-
tors to guide the activation or deactivation of residual blocks
according to image instance complexity. The framework’s teacher
network employs a soft-voting strategy to consolidate knowledge
from multiple pre-trained teacher models, providing consistent
guidance to the student. Within this distillation paradigm, the pol-
icy network’s routing search space is gradually refined, and the
policy and detection networks are jointly fine-tuned to optimize
the alignment between routing decisions and feature extraction.
Experimental results on CIFAR and ImageNet demonstrate that
compared to early exiting and stochastic depth methods, MT-
DyNN achieves higher accuracy at the same inference cost and
reduces the cost by 50% and 59% at comparable accuracy levels.
The generated routing maintains channel sparsity across diverse
scenarios.

Index Terms— Dynamic neural network, autonomous driving,
instance diversity, multi-teacher knowledge distillation, policy
network, multi-branch residual network.

I. INTRODUCTION

MOBILE platforms like autonomous vehicles make
stringent demands on the real-time efficiency of neu-

ral networks for automated scene perception and analysis.
Autonomous vehicle sensor suites generate over 1Gbps of
images and videos, requiring rapid processing to support
time-critical operations such as path planning and collision
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avoidance [1], [2]. However, the limited onboard computing
resources prevent conventional neural network models from
meeting the strict latency requirements of autonomous driv-
ing. These challenges render complex models impractical for
deployment on resource-constrained platforms [3], [4]. Conse-
quently, there is a pressing need for lightweight and adaptive
neural architectures capable of providing real-time scene
understanding within the resource limitations of autonomous
vehicles, ensuring safe and efficient operation.

In autonomous driving, model compression techniques,
including pruning [5], [6], [7], weight quantization [8], [9],
[10], and knowledge distillation [11], [12], [13] are com-
monly employed to improve model efficiency by reducing
parameters or computational costs. However, these methods
typically rely on static network architectures, limiting their
adaptability to dynamic road conditions, including varying
object types, complexities, and clarity. Pruning permanently
removes neurons and convolutions that may appear redun-
dant but are often crucial for handling complex scenarios,
such as occlusions or cluttered environments. Quantization
improves efficiency by reducing parameter precision but may
compromise fine-grained features needed for subtle object
distinctions. Among these techniques, knowledge distillation
strikes a better balance between accuracy and efficiency by
transferring knowledge from a larger teacher model to a
compact student model. However, its reliance on a static
student architecture restricts its ability to adapt to varying input
complexities.

To address the limitations of static architectures, dynamic
neural networks (DyNNs) [14] introduce flexibility by selec-
tively performing computations tailored to diverse image
instances, enabling efficient and adaptive inference. Early
exiting [15], [16] allows predictions at intermediate layers
when confidence thresholds are met, but its fixed exit points
limit adaptability to varying instance complexities, reducing
effectiveness in dynamic environments. In contrast, skip-layer
methods [17], [18] can adjust network routing based on input
characteristics, allocating minimal resources to simple inputs
while reserving deeper layers for complex cases. For example,
as illustrated in Fig. 1, simple instances, such as isolated
pedestrians in well-lit urban environments, may achieve accu-
rate detection with shallow embeddings, whereas complex
instances, like crowded commercial districts with architectural
occlusions and dense pedestrian flow, require deeper embed-
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Fig. 1. Skip-layer dynamic reasoning for simple and complex instances.

dings to capture intricate features. This adaptability helps
skip-layer methods balance speed and accuracy, optimizing
resource utilization in autonomous navigating with frequently
changing conditions. However, their full potential remains
untapped in adapting computations to task-specific require-
ments and incorporating structured guidance during inference.

Integrating knowledge distillation with skip-layer DyNNs
unlocks the potential of dynamic inference for autonomous
driving multi-object detection. By strategically activating
layers according to image instance complexity and scene
variability, the student network leverages rich feature repre-
sentations from larger teacher models, combining flexibility
and efficiency to improve detection performance.

A. Challenging Issues and Related Works

Although promising, the joint design of knowledge dis-
tillation and skip-layer DyNNs for dynamic inference in
resource-constrained vehicular environments poses unique
challenges.

1) Instance-Adaptive Inference: Autonomous vehicles
require balancing accuracy and real-time performance due to
multi-scale traffic entities and dynamic driving scenes. DyNNs
address this challenge by adapting computation based on
input complexity, often leveraging multi-exit and early exiting
strategies. BranchyNet [19] pioneered this approach with
side-branch classifiers, enabling high-confidence samples to
exit early and reducing computational costs. Building on this,
MESS [20] optimizes exit configurations for specific device
capabilities, while MAMO [21] integrates exit selection,
model partitioning, and resource allocation to enhance
performance. LECO [22] further refines early exiting with
neural architecture search. eDeepSave [23] addresses mobile
edge handovers by reallocating resources dynamically, while
ClassyNet [16] introduces class-aware exits for prioritizing
critical tasks in a resource-limited environment. In contrast,
skip-layer methods offer greater flexibility. SkipNet [18] and
Conv-AIG [24] use binary decisions to bypass residual blocks
and reduce computational costs. Wang et al. [25] proposed
a dual dynamic inference framework combining layer and
channel skipping, which reduces computational costs for
simple samples. While these methods offer high adaptability,
challenges remain in achieving robust decision-making
stability and consistently optimizing detection performance
across diverse scenarios.

2) Lightweight and Multi-Scale Design: Lightweight net-
work designs are essential for overcoming the resource
constraints of autonomous vehicles. These models typi-

cally employ depthwise separable convolutions and chan-
nel shuffling techniques to minimize computational costs.
MobileNet [26] achieves this by decomposing standard con-
volutions into depthwise and pointwise operations, while
ShuffleNet [27] improves information flow through its channel
shuffle mechanism. However, these models rely on fixed archi-
tectures, limiting their adaptability to the dynamic demands of
vehicular networks. In contrast, DyNNs like skip-layer-based
residual neural network (ResNet) [17] and recurrent neural
networks (RNNs) [28] adjust computational paths or layer
counts based on input complexity, optimizing resource allo-
cation in changing environments. The multi-branch Inception
architecture [29] compresses channels using 1 × 1 convo-
lutions, reducing complexity while supporting multi-scale
feature extraction. Recent work [30] extends this concept
with an adaptive DyNN for aerial drone images, which uses
flight height and camera tilt to estimate object scale and
adjust convolution rates, avoiding explicit distance measure-
ments. In complex autonomous driving conditions, further
exploration is needed to combine multi-scale with lightweight,
dynamic computation, ensuring efficiency and adaptability
across diverse environments.

3) Multi-Teacher Consistent Guidance: DyNNs with skip-
ping mechanisms depend on a policy network to regulate the
detection network’s activation depth, balancing computational
efficiency and detection accuracy. Lightweight designs, while
efficient, often result in reduced accuracy and unstable routing
decisions. Multi-teacher collaborative optimization offers a
promising solution to these challenges by leveraging diverse
teacher expertise. Route-constrained optimization [31] lever-
ages intermediate states from the teacher’s optimization path,
improving student training stability and accuracy. Similarly,
TC3KD [32] adopts a learning approach where the teacher and
student collaboratively define the training sequence, addressing
instability through dynamic weighting. Traditional frameworks
often rely on fixed or equal teacher weights [33], [34],
which limit their ability to address conflicts among teacher
outputs, resulting in suboptimal guidance. To address this
issue, Yuan et al. designed a reinforcement learning-based
dynamic teacher weighting approach [35], which adaptively
assigns weights based on instance-specific requirements,
enhancing decision-making efficiency. DMTKD-SP [36] incor-
porates confidence-based weight allocation to evaluate teacher
expertise across logical forms, fostering effective collabora-
tion. IsMt-KD [12] refines this with instance-specific grad-
ing, dynamically adjusting teacher contributions. MT4MTL-
KD [37] highlights advanced multi-teacher collaboration by
distilling knowledge across multiple tasks and incorporating
context-aware features. Despite progress, challenges remain in
resolving conflicts among teacher outputs with evolving visual
instances. Adaptive team knowledge transfer needs further
research.

B. Contributions and Organization

In response to the challenges and constraints outlined
above, we propose MT-DyNN, a Multi-Teacher knowledge-
distilled Dynamic Neural Network for instance-adaptive
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detection in autonomous driving, designed to balance accuracy
and real-time performance in resource-constrained vehicu-
lar environments through dynamic routing and multi-teacher
knowledge distillation, while adapting to diverse driving con-
ditions. The key contributions are three folded:
• Soft-Voting Multi-Teacher Knowledge Transfer:

A soft-voting mechanism dynamically selects
high-confidence teacher models from parallel predictions
and fuses their outputs to guide a dynamic student
model, enabling task-specific adaptation in dynamic
scenarios;

• Dynamic Student Model with Multi-Branch Routing: The
student network incorporates a CL-based policy net-
work and a lightweight multi-branch residual detection
network. The policy network generates routing vectors
tailored to instance complexity, while a reward function
integrates the similarity between student predictions and
teacher soft labels to optimize routing and detection.
The detection network, built with Inception blocks and
residual connections, balances reasoning efficiency and
detection precision by reducing parameters without com-
promising the receptive field;

• Route Training and Unified Fine-Tuning: Under multi-
teacher guidance, the policy network’s routing search
space is progressively narrowed, establishing initial rout-
ing capabilities, while the policy and detection networks
are jointly fine-tuned to address misalignment between
routing decisions and feature extraction, mitigating accu-
racy loss from shortcut paths.

Experiments on the CIFAR1 and ImageNet2 datasets vali-
date the superiority of the proposed method. In particular, our
experiments aim to answer the following questions:
• Under the same inference cost (accuracy level), does the

proposed approach improve accuracy (reduce inference
costs) compared to early exiting, stochastic depth, and
pruning strategies?

• Can the MT-DyNN’s routing strategy maintain sparsity in
model channels when handling road conditions of varying
image instance complexities?

The remainder of this paper is organized as follows.
Section II introduces the MT-DyNN architecture, including the
multi-teacher network, the detection and policy networks, and
the joint fine-tuning framework. Section III provides quan-
titative experiments and performance evaluation. Section IV
concludes this work and discusses future directions.

II. PROPOSED SOLUTION

This section explains the rationale and implementation
of the proposed MT-DyNN. As illustrated in Fig. 2, the
framework consists of a multi-teacher network and a stu-
dent network, which includes both a policy and a detection
network. Multiple pre-trained teacher models collaboratively
guide the parameter optimization of the student model, pro-
moting alignment between the policy and detection networks.

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://www.image-net.org/download.php

Fig. 2. MT-DyNN architecture.

This integrated knowledge transfer aims to improve the frame-
work’s adaptability to diverse and extensive data distributions.
Once training is complete, the student model is deployed on
autonomous vehicles for dynamic inference.

A. Soft-Voting Multi-Teacher Knowledge Transfer

In the proposed framework, multiple teacher models special-
ize in distinct detection tasks, such as general object detection,
traffic signs, pedestrians, and traffic lights. Each teacher model
is pre-trained extensively on its specific task to maximize
recognition capabilities. These teacher models provide soft
labels to guide the student model but are not further trained
during the student training process, thereby avoiding additional
computation or coordination costs.

To ensure consistent predictions among multiple teacher
models, we employ a soft-voting mechanism that minimizes
conflicts through parallel prediction and representative teacher
selection. During student model training, teacher models
process sensor-captured images concurrently, each extracting
task-specific features and making predictions. Teachers gen-
erate high-confidence predictions in their areas of expertise,
while their confidence is lower in non-specialized domains.
Teachers are ranked by their prediction confidence, and the
category with the highest confidence is chosen as the primary
prediction. When a consensus is reached among the teacher
models, those with the highest confidence are selected as the
representative teacher. The prediction distributions from these
consensus-based teachers are then fused using soft-voting
to guide the student model, ensuring stable and efficient
knowledge transfer.

Let C be the number of detection categories. For a given
category c, the logit outputs of teacher model m and the stu-
dent model are represented by zm,c and zc. The corresponding
predicted probabilities are represented as

σ(zm,c) =
exp

(
zm,c/τ

)∑C
c′=1 exp

(
zm,c′/τ

) (1)

and

σ(zc) =
exp (zc/τ)∑C

c′=1 exp (zc′/τ)
(2)
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where τ represents the distillation temperature. For an image
x , teacher model m generates a probability distribution dm =[
σ(zm,1), σ (zm,2), . . . , σ (zm,C )

]
, which serves as the weight

for soft-voting. Denoted M the number of teacher models.
Suppose category c is predicted by the majority of N (≤ M)
teacher models (e.g., 1 in the Category Prediction box with a
blue background in Fig. 2), while disregarding teachers that
selected other categories (shown in the same box with a gray
background). The set of teacher models that predict category
c is determined as

Mc = {m ∈ {1, 2, . . . , M} | σ(zm,c) = max
c′∈{1,2,...,C}

σ(zm,c′)}.

The soft-voting mean of the high-level knowledge from the N
teacher models can be computed as

vc =
1
N

∑
m∈Mc

dm . (3)

Based on (3), the cross-entropy loss between the aggregated
soft labels from the teacher models and the student labels is
computed as

LK D = −

C∑
c=1

vc log(σ (zc)). (4)

Intermediate layer features from the teacher models can also
be used for concept-based distillation to transfer richer infor-
mation [38]. The feature space embeddings of the teacher and
student models are denoted as

Lmid =

∥∥∥∥∥F −
1
M

M∑
m=1

Fm

∥∥∥∥∥
2

2

(5)

where Fm and F represent the intermediate layer features of
teacher model m and the student model, respectively. The
feature representation of the student model aims to approxi-
mate the mean feature representation across all teacher models.
Additionally, the student model is required to learn from the
ground truth labels, and the standard cross-entropy loss is
introduced to optimize the training objective

LC E = −

C∑
c=1

yc log(σ (zc)). (6)

The overall loss is quantified as a weighted combination of (4),
(5), and (6), given by

L = LC E + β1LK D + β2Lmid (7)

where β1 and β2 balance the knowledge distillation loss and
the standard cross-entropy loss.

B. Dynamic Student Model With Multi-Branch Routing

The student network comprises a CL-based policy network
and a multi-branch residual detection network. The former
achieves adaptive decisions and generalization through con-
solidated routing strategies from multiple teachers. The latter
learns precise recognition from collective teacher classification
cues. The components are detailed as follows.

Fig. 3. Multi-branch residual block structure.

1) Multi-Branch Residual Detection Network: We design a
novel dynamic multi-branch residual network that incorporates
multiple parallel paths within the residual structure. Fig. 3
illustrates a multi-branch residual block composed of Inception
blocks and residual connections. To reduce computational
complexity, 1 × 1 convolutional kernels are used to decrease
the channel dimension of the feature maps. A multi-branch
structure is employed to extract multi-scale features, where
the first branch replaces the 3 × 3 convolutional kernel of
traditional residual networks with 3×1 and 1×3 convolutional
kernels, reducing the total parameter count while maintaining
the same receptive field. The second branch provides a 5 ×
5 convolutional kernel, while the third branch connects directly
to a pooling layer. The feature maps from all branches are
summed to obtain an aggregated feature matrix, which is then
further dimensionally transformed by an 1 × 1 convolution.
This matrix is added to the downsampled original feature
matrix through a shortcut connection in the residual network
to produce the output. When yi is fed into the i th multi-branch
residual block, the output of this block is yi+1 = Fi (yi )+ yi ,
which serves as the input for the next residual block.

The proposed multi-branch residual block adopts a
lighter-weight Inception block, followed by a 1 × 1 convo-
lution layer (referred to as the filter expansion layer). This
layer increases the dimensionality of the feature maps to
achieve deep alignment with the input features before residual
summation. This design enables the detection network to
effectively capture multi-scale visual information, from vehicle
contours to road signs, enhancing its ability to extract diverse
and fine-grained features. Additionally, parallel processing is
leveraged to improve computational efficiency in model infer-
ence, facilitating real-time performance in object detection
tasks. The detection network is initialized following standard
supervised training, establishing initial routing capabilities.

In a residual network, skipping a residual block does not
significantly impact accuracy. Even with the removal of some
residual blocks, low-dimensional feature information can still
be partially retained [39]. Unlike single-path static networks
(e.g., AlexNet [40] and VGGNet [41]), the proposed detection
network offers multiple selectable paths. Inspired by this,
we adjust the detection network architecture by selecting
paths. Specifically, under the guidance of the policy vector,
the multi-branch residual network achieves dynamic routing
via shortcut connections in the residual structure. When the
residual block receives a “skip” command, the convolutional
kernels within the residual block do not participate in infer-
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Fig. 4. CL-based route training.

ence, effectively bypassing the block. Thus, we have yi+1 =

yi . Nevertheless, skipping too many blocks or selecting blocks
inappropriately during inference inevitably increases the risk
of classification errors. Dynamically selecting an optimal
combination of residual blocks based on instance attributes
(i.e., dynamic routing) is essential for enhancing the model’s
real-time performance and adaptability.

2) CL-Based Policy Network: The policy network helps
the pretrained detection network locate the optimal subset
of residual blocks for accurate classification with the fewest
blocks. A detection network with K residual blocks has 2K

on/off options for the blocks, corresponding to 2K
−1 optional

routes. Thus, the dimension of the strategy search space grows
exponentially with the number of residual blocks. Under high
dimensionality, randomly initializing the strategy search makes
policy network training difficult or even non-convergent.

To mitigate this issue, a CL-based lightweight policy net-
work is introduced that progressively determines the action
sequence through staged search with a scheduling mechanism.
During training, a scheduling variable h controls the number
of residual blocks involved in learning. Initially, h is set to 1,
meaning only the last residual block is trained. As training
progresses, h increases by 1 every T training epochs, following

h = min
{

1+
⌊ e

T

⌋
, K
}

, (8)

where e represents the current training epoch, and T regulates
the rate at which h increases. This scheduling ensures that
during the early stages of training, only a small number of
residual blocks are involved, while the model progressively
incorporates more blocks until all K blocks are utilized.
The scheduling function follows a monotonically increasing
process, which facilitates a smooth transition from simpler
to more complex network structures. At each training epoch,
the policy network learns only the activation strategies of
the last h residual blocks, while the first K − h residual
blocks remain active. This approach not only accelerates
model convergence but also reduces training costs. Based on
the input features, the policy network evaluates and optimizes
each block’s on/off status, effectively assessing its utility. After
CL training, the policy network can flexibly identify and skip
redundant residual blocks to accommodate instance diversity.

As shown in Fig. 4, the CL scheme begins model training
with easy samples, gradually progressing to more challenging

ones as training advances. Throughout the process, train-
ing samples are assigned dynamic weights based on their
complexity—initially emphasizing simpler samples and grad-
ually shifting focus to more complex ones. To formalize the
curriculum-based sample selection process, let P(z) denote
the original data distribution. The weight for each sample
in the eth training round is then denoted as Wλ(z), where
λ = e

E represents the normalized training step, with E being
the total number of training steps, and 0 ≤ λ ≤ 1. Wλ(z)
is constrained within the range 0 ≤ Wλ(z) ≤ 1. The sample
distribution at normalized training epoch λ is given by

Qλ(z) ∝ Wλ(z)P(z),∀z (9)

with the constraint that
∫

Qλ(z) dz = 1. When λ = 1, (9)
simplifies to Q1(z) = P(z) since W1(z) = 1.

Two constraints are introduced to ensure a smooth and
gradual transition from simpler to more complex tasks during
training. The first is a monotonic increase in information
entropy, which requires the entropy of Qλ(z) to increase as
training progresses. Specifically, the entropy at a later step
λ+ ε must be less than the entropy at step λ, i.e.,

H(Qλ) > H(Qλ+ε),∀ε > 0, (10)

ensuring that the sample distribution becomes more diverse
over time. The second constraint ensures a monotonic
non-decrease in sample weights. This means that Wλ(z)
assigned to each sample should not decrease as training
progresses, reinforcing the emphasis on more complex samples
without diminishing their importance, expressed as

Wλ+ε(z) ≥ Wλ(z),∀z, ε > 0. (11)

Accordingly, the CL weight function is expressed as

Wλ(z) = (1− λ) exp
(
−

h(z)
K

)
+ λ, (12)

where h(z)
K represents the proportion of activated residual

blocks when processing sample z, serving as an indirect
measure of its complexity. This weighting scheme ensures that
simple samples (with few activated blocks) are prioritized in
the early stages of training, while complex samples (with more
activated blocks) are given focus later on. This aligns with the
CL’s core principles.

C. Routing Training and Unified Fine-Tuning

The policy network generates routing vectors under
multi-teacher guidance to determine detection network routing,
while detection classifications and teacher cross-entropy losses
back-propagate to reinforce policy decisions. Although CL
equips the policy network with diverse routing knowledge,
selecting shortcut paths may reduce detection accuracy com-
pared to full model inference. This limitation motivates a
joint fine-tuning scheme to better align routing decisions with
feature extraction. Unlike the earlier training stage, which
emphasizes policy learning with fixed detection parameters,
the fine-tuning phase updates both networks simultaneously,
mitigating accuracy loss from shortcut paths and enhancing
overall performance.

Authorized licensed use limited to: Nanjing Tech University. Downloaded on May 07,2025 at 01:26:07 UTC from IEEE Xplore.  Restrictions apply. 



SHEN et al.: MT-DyNN: MULTI-TEACHER DISTILLED DyNN FOR INSTANCE-ADAPTIVE DETECTION 6121

Fig. 5. Multi-teacher-assisted route training and joint fine-tuning framework.

As illustrated in Fig. 5, the key route training and fine-tuning
workflow comprises:

• Knowledge transfer: Multiple teacher networks collab-
oratively guide the parameter tuning of the policy and
detection networks, providing integrated cues tailored to
each input instance.

• Policy generation: The CL-enabled policy network
extracts input features and outputs routing vectors, with
route training involving the policy, detection, and teacher
networks.

• Quick connection: Guided by policy vectors, the
multi-branch residual detection network leverages skip
connections for dynamic leapfrogging.

• Dynamic inference: Residual blocks are selectively acti-
vated or bypassed based on the dynamic routing policy.

• Unified fine-tuning: The detection network fine-tunes
itself under multi-teacher supervision, providing clas-
sification results and cross-entropy loss to the reward
function for CL. These rewards are back-propagated
to the policy network, aligning routing decisions more
closely with feature extraction for improved synchroniza-
tion.

Unlike stochastic depth [39], where residual block selection
is random, block selection is controlled by the policy network
in our method to improve alignment with detection instances.
For an input image, the policy network outputs all routing
decisions for the residual network at once, essentially forming
a single-step Markov decision process given the input state.
Let sk ∈ [0, 1] be the kth element in policy vector s, and
its value represents the probability that the residual block k
is turned on. Given an image x and a pre-trained detection
network with K multi-branch residual blocks, the strategy for

residual block selection can be defined as a K -dimensional
Bernoulli distribution, expressed as

πW (u|x) =

K∏
k=1

suk
k (1− sk)

1−uk (13)

where the policy network is denoted as f (x;W ), a function of
the input image, x , and weights, W . The output of x processed
by an activation function σ(x) = (1+ e−x )−1 is expressed as

s = f (x;W ). (14)

A lightweight ResNet-8 model is used to construct the policy
network, with its inference overhead primarily determined by
the number of convolutions. Due to the small number of con-
volutions, the policy network contributes only 8% of the total
inference cost. According to (14), the policy network generates
an action vector u, which dictates the participation of residual
blocks during inference. Let the binary variable uk represent
the k-th element in u, where uk = 1 indicates activation and
uk = 0 indicates deactivation of the k-th residual block. This
action vector acts as a soft attention mechanism, guiding the
activation ratio of the detection network.

We develop a novel reward function to quantify the benefits
of action vector u and guide the policy network towards high
accuracy and low-cost routing strategies. Based on (7), the
similarity between the student network predictions and the soft
labels generated by teacher networks is quantified as

p = 1− tanhL. (15)

The route training aims to improve (15) and reduce detection
network route length (i.e., activated blocks). Accordingly, the
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reward function is formalized as

R(u) = p

1−

(
1
K

K∑
k=1

uk

)2− (1− p)γ (16)

where 1
K
∑K

k=1 uk represents the proportion of activated resid-
ual blocks. With correct predictions, a shorter route leads to
higher positive rewards, encouraging the policy network to
skip more residual blocks. Hyperparameter γ serves as a base-
line anchor to balance immediate and future rewards, while
the reward function dynamically adjusts to the environment’s
diversity. Normally, utilizing more residual blocks improves
detection accuracy at the cost of lower inference speed. The
expectation of rewards is defined as

J 1
= Eu∼πW [R(u)]. (17)

We train a policy network that maximizes (17), whose yielded
policy vectors determine the blocks conducting forward propa-
gation in the detection network. The classification results based
on such routes are used for reward calculation.

Policy samples are collected from a K -dimensional
Bernoulli distribution. For uk ∈ {0, 1}, the policy gradient is
expressed as

∇W J = E[R(u)∇W log πW (u|x)]

= E[R(u)∇W log
K∏

k=1

suk
k (1− sk)

1−uk ]

= E[R(u)∇W

K∑
k=1

log[skuk + (1− sk)(1− uk)]]. (18)

In mini-batches, Monte Carlo sampling obtains the expected
gradient of (18). These gradient estimations are unbiased.
A self-critical baseline [42] is applied in (18) to reduce
variance. Accordingly, we reexpress (18) as

E[(R(u)− R(ũ))∇w

K∑
k=1

log[skuk + (1− sk)(1− uk)]],

(19)

where ũ refers to the most likely routing under the current
policy, with uk = 1 if and only if sk ∈ (0.5, 1), otherwise,
uk = 0. To encourage the policy network to explore further,
we introduce a weighting factor α and update (14) to

s = α · s + (1− α) · (1− s), (20)

with α > 1 for sampling diversified policy vectors.
The route training and joint fine-tuning were performed as

outlined in Algorithm II-C, with multiple teacher networks
collaboratively guiding the optimization of both policy and
detection networks to balance detection accuracy and inference
speed. During the route initial phase, the policy network sets
the first K − h elements in s to 1, incrementally increasing h
to facilitate the route training on the detection network based
on CL (lines 5–23). During the training, the total loss (cor-
responding to 7) and the reward value in CL (corresponding
to 16) are jointly updated, driving both towards synchronized
convergence. Once routing patterns are progressively explored,

the model transitions to joint fine-tuning, leveraging integrated
knowledge from the teacher networks to align the policy
network with the detection network further (lines 24–27).

Algorithm 1 Multi-Teacher-Distilled Route Training and Fine-
Tuning Algorithm
Require: Image dataset; M pre-trained teacher models

1: Randomly initialize policy network f with weight W ;
2: Set the CL and joint fine-tuning batches B1 and B2;
3: Set α, τ , β1, and β2.
4: Preprocess the images;
5: for h = 1 to B1 do
6: s ← f (x;W );
7: s← αs + (1− α)(1− s);
8: if h < K then
9: s[1 : K − h] = 1;

10: end if
11: Sample vector u from the Bernoulli distribution;
12: Perform dynamic inference on the detection network

based on u;
13: for m = 1 to M do
14: Obtain σ(zm) with τ according to (1);
15: end for
16: Find majority category c and collect teacher set Mc
17: Derive soft-voting mean vc according to (3);
18: Obtain σ(z) with τ according to (2);
19: Obtain LK D , Lmid and LC E according to (4)-(6);
20: Aggregate overall loss with parameters β1 and β2 to

balance LK D and Lmid according to (7);
21: Calculate reward according to (16);
22: Update the backpropagation gradient based on (19);
23: end for
24: for h = 1 to B2 do
25: Update detection network parameters based on (7);
26: Update policy network parameters based on (19);
27: end for

III. EXPERIMENT DESIGN AND RESULT ANALYSIS

To evaluate the proposed method’s detection and inference
performance across varying image complexities and object
instances, we utilized three benchmark datasets: CIFAR-10,
CIFAR-100, and ImageNet. The CIFAR datasets each con-
sisted of 60,000 32 × 32 RGB images, divided into 50,000
for training and 10,000 for testing. ImageNet, with 1.2 million
training images spanning 1,000 categories, included a valida-
tion set of 50,000 images for evaluating top-1 accuracy. Model
training was conducted on a high-performance server equipped
with a 13th Gen Intel Core i9-13900K processor, an MSI
PRO Z690-P D4 motherboard, 4 × 32GB DDR5 3600MHz
memory, and a 1TB Samsung NVMe M.2 SSD. The system
also featured two NVIDIA RTX 4090 24GB GPUs, 128GB
of RAM, and 6TB of high-speed storage.

The proposed solution was implemented in PyTorch, uti-
lizing the Adam optimizer for training. α, in (20) was set to
0.8, and the temperature, τ , was uniformly set to 4 across all
methods for consistency. β1 and β2, in (7) were set to 1 and
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TABLE I
STUDENT MODEL COMPRESSION AND CLASSIFICATION ACCURACY

50. T , in (8) was set 3. The learning rate was initialized at
1 × 10−4, with a batch size of 2048 for policy network CL
training. During joint training, the learning rate was adjusted
to 1× 10−5, and the batch size was reduced to 256.

Two types of the multi-branch residual detection network,
referred to as MRDN-15 and MRDN-54, were constructed,
inspired by the Inception15 and Inception54 architectures,
and included comparable convolution counts to ResNet50 and
ResNet110 [43]. These networks, featuring 15 and 54 multi-
branch residual blocks, respectively, served as baseline static
models to validate the effectiveness of DyNN routing.

A. Effectiveness of Multi-Teacher Distillation

Fig. 6(a) illustrates the accuracy convergence over epochs.
Compared to no distillation and equal-weight distillation,
the proposed soft-voting method achieved faster convergence
with higher accuracy and exhibited minimal fluctuations,
demonstrating superior stability. Fig. 6(b) presents the reward
value convergence over epochs, where the proposed method
displayed a faster convergence during early training stages
and reached higher reward values in fewer epochs than the
other methods. These results indicate that the proposed method
enabled more accurate predictions with shorter inference paths.
For subsequent experiments, the multi-teacher model with the
voting mechanism was adopted as the default configuration.

To analyze model compression and accuracy improvements
achieved by multi-teacher distillation, ResNet110 [43], VGG-
19 [41], and DenseNet121 [44] were used to construct the
teacher ensemble, guiding the training of the student net-
work (a multi-branch residual network based on Inception15).
Table I summarizes the parameter sizes and classification
accuracy of each model on CIFAR-10 and CIFAR-100. Using
the parameter-heavy VGG-19 as a benchmark, we evaluated
the compression rates of other models. Despite having only
3.2M parameters, the student model achieved an impressive
accuracy of 93.60% on CIFAR-10 and 73.62% on CIFAR-
100, surpassing ResNet110 and VGG-19, and performing
comparably to DenseNet121. These results highlighted the
effectiveness of the proposed multi-teacher distillation frame-
work in achieving competitive accuracy with significantly
reduced model complexity.

Table II shows the impact of ensemble size on student
model classification. Accuracy positively correlates with more
teachers, albeit with diminishing returns. The gap is 0.7%
from single to dual-teacher and 0.4% from dual to triple
guidance, indicating marginal gains. The student sees less
incremental accuracy gains from later teachers because of
redundancy, model capacity bottlenecks, and only consensus

TABLE II
IMPACT OF TEACHER NUMBERS ON STUDENT ACCURACY

knowledge being effectively retained while negative and niche
transfers are filtered out. Feature representations learned by
the student on CIFAR-100 are further visualized in Fig. 7.
Unlike no-teacher and single-teacher, multi-teacher guidance
produces more compact class-specific clusters with clearer
decision boundaries among categories.

B. Effectiveness of DyNN Routing Strategies

The second experiment compared MT-DyNN with early
exiting [28] and stochastic depth [39]. Table III presents
the accuracy and average route length results for MRDN-15
and MRDN-54 on CIFAR-10 and CIFAR-100. The average
number of utilized residual blocks, denoted as L , represented
the route length determined by the policy network. To ensure
a fair comparison, early exiting and stochastic depth models
were configured to use the ceiling of L , i.e., ⌈L⌉, setting
an upper bound on their detection capabilities relative to
the proposed method. For early exiting, the first ⌈L⌉ blocks
remained activated, while for stochastic depth, ⌈L⌉ blocks
were randomly selected for activation.

On CIFAR-10, MRDN-15 with CL-trained dynamic routing
achieved an average route length of 9.4 and a classification
accuracy of 89.3%, outperforming early exiting and stochastic
depth by 72.7% and 68.8%, respectively. Notably, in MRDN-
54, nearly 15% of images required fewer than 10 blocks, with
some utilizing fewer than 3. These results demonstrated that
the proposed CL method improved classification accuracy and
significantly reduced inference costs. Static pruning and early
exiting lacked the granularity to achieve such dynamic tuning.

Joint fine-tuning further enhanced performance. On CIFAR-
10, fine-tuned MRDN-15 and MRDN-54 improved classifi-
cation accuracy by 4.3% and 17.3%, respectively, compared
to models relying solely on CL. Additionally, average route
lengths were reduced by 2.5 and 3.2 blocks. These results
underscored the effectiveness of the joint fine-tuning approach
in boosting accuracy and optimizing routing efficiency.

The developed policy network generates a complete routing
vector in a single step without requiring intermediate outputs
during inference, minimizing execution overhead. To validate
this, the proposed dynamic routing strategy was compared to
the baseline per-step policy inference method [28] (referred
to as Single), which uses conventional reinforcement learning
for policy training. For fairness, all methods were configured
with the same residual blocks to compare inference speeds at
identical accuracy levels.

Table IV summarizes the average inference latencies and
speedup ratios on CIFAR-10. When achieving the same
accuracy as MRDN-15, the proposed method improved clas-
sification speed by 16.3% over full network reasoning (named
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Fig. 6. Convergence curve of detection accuracy and the reward function.

Fig. 7. Feature visualization of MRDN-15-based student model on CIFAR-100.

TABLE III
INFLUENCE OF ROUTING STRATEGIES ON CLASSIFICATION ACCURACY

Full-Net). In contrast, Single reduced classification speed
by 28.7% due to its per-step inference, which introduced
extra computations and resulted in a negative speedup. These
comparisons verified the significant speedup achieved by the
proposed one-shot routing vector generation.

C. Dynamic Inference Acceleration Performance Analysis

The third experiment tuned the hyperparameter γ in (9)
to balance routing lengths and detection accuracy, identifying
optimal trade-off points under different detection requirements.
Each point on the curves in Fig. 8 represented a set of

model parameters under a given γ . The average floating-point
operations (FLOPs) incurred during image classification on the
test set were used to evaluate model complexity. For a com-
prehensive and fair comparison of acceleration performance,
the following three baseline algorithms were included:

• ACT [28]: An early exiting method that terminates infer-
ence once confidence thresholds are met.

• SACT [28]: An extension of ACT that incorporates gate
functions, enabling adaptive inference depths for different
image regions (e.g., backgrounds, edges, or contours).
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Fig. 8. Classification accuracy vs. average FLOPs across datasets.

TABLE IV
INFLUENCE OF ROUTING STRATEGIES ON INFERENCE COST

Fig. 9. Probability distribution of route length.

• PFEC [45]: A static network pruning method designed to
accelerate convolutions by removing less critical param-
eters.

Fig. 8(a) shows the average FLOPs and detection accuracy
of different methods on CIFAR. Compared to ResNet-110, the
best model from our method (indicated by the arrow) improved
accuracy by 0.4% (93.6% vs. 93.2%) while reducing FLOPs
by 69% on average (1.6 × 108 vs. 5.1 × 108). Our method

required only 48% of the FLOPs used by ACT to achieve
the same 93% accuracy. At the same 93.6% accuracy, the
proposed method reduced FLOPs by 62% compared to PFEC.
Additionally, PFEC could be integrated with the proposed
framework for further convolutional acceleration.

On ImageNet, as shown in Fig. 8(b), our method surpassed
ResNet-110 in classification accuracy (76.9% vs. 76.3%) while
reducing inference cost by 14% (1.36× 1010 vs. 1.58× 1010

FLOPs). Even with slightly lower accuracy (see the rectangle
in the figure), our framework’s inference performance matched
that of the full ResNet-110 while reducing computational costs
by 26% (1.17×1010 vs. 1.58×1010 FLOPs). Achieving a 26%
inference speedup without compromising accuracy is notable.
For instance, in a high-accuracy image recognition service
receiving 1 billion API calls daily, the proposed solution could
save 1200 GPU hours on a single P6000 GPU (0.024s/image).

D. Influence of Instance Complexity on Dynamic Inference

The experimental results demonstrate that the computational
costs of the proposed method vary significantly across images
of different complexities. Images with salient features typically
require fewer convolutional embeddings than more complex
or atypical images. This subsection examines the relationship
between image complexity and routing lengths to better under-
stand the impact of instance complexity on dynamic inference.
To visualize this, the FLOPs of 10,000 test instances were
collected, and the routing length utilized by each instance
was recorded. Fig. 9 shows the probability density of routing
lengths. With a detection network comprising 15 multi-branch
residual blocks, test instances used an average of 6.8 blocks.

Instances below the average routing length of 7 were
classified as the low-FLOP group, while those equal to or
exceeding 7 formed the high-FLOP group. Fig. 10 displays
eight representative images from these two groups, along with
their ground-truth labels. The differences between the groups
are visually distinct: images in the low-FLOP group have clear
and complete features, making objects easily recognizable.
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Fig. 10. Representative examples of low and high FLOPs from CIFAR-10.

Fig. 11. Visualization for short route examples for low FLOPs and high FLOPs from CIFAR-10.

Fig. 12. Representative image examples from ImageNet.

In contrast, images in the high-FLOP group exhibit incomplete
contours or atypical traits that hinder object identification. For
example, image b lacks intact car contours, showing only
the rear, while image c displays only the latter half. Other
high-FLOP examples have blurred outlines or low contrast
with backgrounds, increasing the risk of misclassification.

To further investigate, the policy network was fed the two
image groups in Fig. 10, and the generated routing vectors
were visualized in Fig. 11. The horizontal and vertical axes
represent residual blocks and image indices, with grey indicat-

ing active blocks and white indicating skipped blocks. Three
key observations emerge:

• Consistent routing within categories: Routing strategies
are similar for image instances of the same category,
suggesting that features for each category are stored in
analogous filters.

• Complexity-dependent routing lengths: The low-FLOP
group utilizes fewer blocks than the high-FLOP group,
supporting the hypothesis that image complexity corre-
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Fig. 13. Visualization for long route examples on ImageNet.

lates positively with routing lengths, leading to heavier
inference loads for more ambiguous images.

• Efficiency for distinguishable images: Images with
salient features rely on short routes, while ambiguous
or blurry images require longer routes for accurate
identification.

The analysis was extended to ImageNet, which contains a
richer variety of image classes and higher resolutions than
CIFAR. Larger models are needed to encapsulate intricate
parameters and maintain accuracy. Fig. 12 displays eight
representative examples from ImageNet, processed using the
MRDN-54 model. Routing strategies for these examples are
visualized in Fig. 13. Comparing node activations between
Figs. 11 and 13, the dynamic network demonstrates improved
versatility in adapting to varying instance complexities. It gen-
erates appropriate routing strategies tailored to both simple
and complex images, balancing accuracy and computational
cost. Notably, the presence of “routing blank” highlights
the sparsity of active channels under the proposed dynamic
routing strategy. This sparsity significantly reduces FLOPs,
as illustrated in Fig. 8, where the policy network strategically
limits the number of participating convolutions, enhancing
efficiency without compromising classification performance.

In real-world autonomous driving scenarios, a vehicle can
be equipped with detection networks of varying depths, relying
on its capabilities. It can either deploy a specific detection
network or have multiple networks of different depths. For
the latter case, if combined with gating or similar switching
mechanisms, the autonomous driving system can adapt its pro-
cessing capabilities to differentiated situational requirements,
providing fine-grained detection performance while managing
computational limitations. Regardless of the detection network
configuration, it can be integrated into the proposed multi-
teacher framework.

IV. CONCLUSION

We have introduced MT-DyNN, a multi-teacher knowl-
edge distillation-enhanced DyNN framework designed to
enable real-time multi-object detection on resource-limited
autonomous vehicles. The detection network dynamically acti-
vates or deactivates its multi-branch residual blocks based on
routing vectors generated by the policy network, balancing
inference cost and accuracy to address diverse demands.
A multi-teacher-supervised routing training and fine-tuning
scheme were developed to enhance the alignment between the

detection and policy networks. Experimental results on CIFAR
and ImageNet demonstrate that the proposed DyNN routing
approach maintains channel sparsity across images of varying
complexities, highlighting its efficacy and adaptability. Under
the same inference cost (accuracy level), MT-DyNN outper-
forms mainstream baselines such as early exiting, stochastic
depth, and pruning in detection accuracy (reasoning costs).MT-
DyNN also allows both teacher and student networks to
be replaced as needed. With further customization, MT-
DyNN could streamline detection frameworks and enhance
resource-constrained systems in autonomous vehicles, drones,
and low-earth orbit satellites.

Future work will explore interpretability to understand the
correlation between DyNN routing and image characteristics,
further unlocking the potential of dynamic inference and multi-
teacher collaboration.
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