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Slicing-Based Task Offloading in Space-Air-Ground
Integrated Vehicular Networks

Hang Shen

Abstract—A slicing-based collaborative task offloading frame-
work for space-air-ground integrated vehicular networks is
proposed in this study, which can provide differentiated quality-
of-service (QoS) guarantees for task offloading for high-speed
vehicles while maximizing the number of completed tasks. A
service-oriented radio access network (RAN) slicing framework
is presented that supports slicing window adaptation, spectrum
and computing resource orchestration, and collaboration among
heterogeneous base stations. Based on the queuing model, the
collaborative decision-making of RAN slicing and task offloading is
modeled as a problem of maximizing the number of long-term task
completions, which consists of three subproblems-slicing window
division, resource slicing, and task scheduling-which are solved by
a multi-access edge computing (MEC)-enabled controller, forming
a closed loop with the slicing window as the period. When a new
slicing window arrives, the controller determines its duration ac-
cording to task traffic fluctuations and allocates resources to RAN
slices through an optimization method. A double deep Q-learning
network (DDQN)-based algorithm is developed for scheduling
workflow on small time scales within a slicing window. Simulation
results demonstrate that the proposed scheme performs better than
existing approaches in terms of adaptability, task completion rate,
and control overhead.

Index Terms—Space-air-ground integrated vehicular networks,
slicing window adaptation, RAN slicing, task scheduling, deep
reinforcement learning.

1. INTRODUCTION

HE characteristics of the fifth-generation (5 G) networks,
T such as high bandwidth, millisecond-level delay, and ultra-
high-density connections, facilitate the development of Internet
of vehicles (IoV), which connects vehicles, base stations (BSs),
and service providers as a collaborative system and realizes
the real-time acquisition of comprehensive information [1]. In-
vehicle devices have limited computing and storage capabilities,
and therefore do not meet the requirements of high-complexity,
data-intensive, and delay-sensitive applications. A feasible solu-
tion is the multi-access edge computing (MEC) paradigm [2], by
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which the computation tasks released by vehicles are offloaded
to MEC servers on BSs for processing, and the computation
results are sent back to vehicles, thereby supporting low-delay
and high-efficiency vehicle services. However, there are issues
related to terrestrial RANS, such as limited coverage, rigid net-
work structure, and slow service response [3]. The high mobility
of vehicles, complex urban road conditions, and diverse task
requirements exacerbate the difficulty of task offloading and
resource provisioning.

Space-air-ground integrated vehicular networks (SAGVNs)
as promising networking architecture, utilize ground-based net-
works, supported by air- and space-based networks, which can
provide seamless, comprehensive information services for ve-
hicles and meet all-time and all-domain service needs [4]. The
ground-based network is composed of cellular BSs, which offer
services to areas with heavy traffic of people and vehicles. The
air-based network consists of drone BSs, with mobile deploy-
ment and line-of-sight (LoS) advantages. The space-based net-
work consists of low earth-orbit (LEO) satellites, and is a crucial
structure to achieve global coverage and universal connectivity.
Both drones and LEO satellites can serve as MEC platforms [5],
[6], providing network access and task offloading for vehicles
at the edge of the ground-based network, and areas with poor
infrastructure.

With the development of intelligent transportation and au-
tonomous driving, more and more in-vehicle applications are
being developed, which are either delay-sensitive (e.g., route
planning [7] and collision warning [8]) or delay-tolerant (e.g.,
high-definition (HD) map downloads [9]). Network slicing tech-
nology [10] can divide a physical RAN into multiple isolated
virtual networks (i.e., RAN slices), to provide customized ser-
vices for different applications. RAN slicing can provide differ-
entiated quality-of-service (QoS) for IoV task offloading. The
MEC-enbaled controller allocates computing and communica-
tion resources for a RAN slice based on information such as task
traffic. In the sliced IoV, the offloading strategy decides where to
offload tasks based on task attributes, BS loads, vehicle speeds,
and routes. A natural step in the evolution of SAGVNs is to
extend RAN slicing from ground-based networks to air- and
space-based networks to support diverse IoV applications.

A. Challenging Issues and Related Works

SAGVN is a dynamic architecture with the features of multi-
network integration and high vehicle speed, which bring many
challenges to RAN slicing and task offloading:

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing Tech University. Downloaded on April 11,2024 at 04:32:26 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-8804-2787
https://orcid.org/0000-0002-6152-4292
https://orcid.org/0000-0002-9878-9067
mailto:hshen@njtech.edu.cn
mailto:tianyb97@njtech.edu.cn
mailto:wangtianjing@njtech.edu.cn
mailto:bai@njtech.edu.cn

4010

1) Dynamic Adjustment of Slicing Window: This is a funda-
mental problem, and the key to balancing overhead and QoS.
Due to the dynamic nature of the network and the time-varying
task traffic, the service provision capability of slices will grad-
ually weaken over time. The MEC controller must periodically
reallocate resources to RAN slices. If the slicing window is
too short, resource reallocation will be triggered frequently,
which brings huge control and computing costs. However, if the
slicing window is too long, the fluctuation of task traffic may
lead to the destruction of slice performance isolation. Zhang
et al. proposed a dynamic RAN slicing framework for 1oV,
which divides time into multiple equal-length slicing windows,
where the optimal resource allocation strategy is calculated for
each window [11]. Li et al. proposed a hierarchical soft RAN
slicing framework for differentiated service provisioning, which
conducts network-level and BS-level resource slicing on both
large and small timescales [12]. In the above methods, resources
are allocated in a fixed slicing window.

2) Multi-Dimensional Resource Orchestration for Multi-tier
Networks: The traffic in a road network is unevenly distributed
in both time and space. There are generally large differences
in the deployment, coverage, and resources for heterogeneous
BSs. The coupling of resources in heterogeneous networks
exacerbates the complexity of decision-making. Most studies
have considered only terrestrial networks or a single type of
resource slicing. Ye et al. proposed a downlink spectrum re-
source slicing framework for heterogeneous wireless networks,
which achieved differentiated QoS provisioning for machine-
type devices and end devices [13]. Peng et al. incorporated a
transmit power adjustment mechanism and designed a spectrum
slicing strategy based on multi-access edge computing [14].
A spectrum and computing resource slicing framework was
proposed by Wu et al. to meet the requirements of task offloading
of differentiated QoS in IoV [15]. Peng et al. combined a deep
deterministic policy gradient (DDPG) and hierarchical learning
to achieve multidimensional resource allocation in vehicular
networks [16]. Li et al. presented a resource allocation frame-
work for terrestrial-satellite networks, integrating a multi-agent
DDPG algorithm to allocate resources and deploy cache equip-
ment for maximum energy efficiency [17].

3) Collaboration Among Heterogeneous BSs: The interaction
between a high-speed vehicle and a BS is instantaneous and is
affected by vehicle speed, direction, and road conditions. The
collaboration among air-ground, space-ground, and air-space
BSs helps to reduce delay and facilitate task completions. Tra-
ditional model optimization and heuristic methods [18], [19],
[20] cannot deal with real-time task offloading in dynamic
scenarios. By integrating the decision-making advantages of
reinforcement learning (RL) and the perceptual benefits of deep
learning (DL), deep reinforcement learning (DRL) [21] allows
individuals to perceive the environment and act accordingly, to
deal with high-dimensional state-action spaces. Apostolopoulos
et al. proposed a drone-Assisted framework for making data of-
floading decisions, allowing users to offload their data to ground
or drone-mounted MEC servers [22]. The optimal offloading
for each user was formulated as a maximization problem of
their satisfaction and treated as a non-cooperative game. Most
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existing studies on BS collaboration in IoV consider the ground
network. Kai et al. proposed a pipeline-based task offloading
method by which mobile devices can offload tasks to edge nodes
or the cloud according to their computing and communication
capabilities [23]. Bai et al. investigated a delay minimization
problem for multi-UAV-enabled edge-cloud cooperative offload-
ing [24]. The problem was formulated as a non-convex problem
considering network congestion, air-to-ground channels, and
cooperative computing. Li et al. proposed a DRL-assisted task
division and scheduling algorithm to maintain service continu-
ity by preselecting edge servers, and reduce computing delays
through edge-side collaboration [25]. Based on the multi-armed
bandit theory, the online and off-policy learning approaches
were presented in [26] to predict the offloading latency and
select the least congested network. Wang et al. proposed an
imitation learning-based task scheduling algorithm to minimize
energy consumption under the task latency constraint of vehic-
ular networks [27]. By combing actor-critic (A3C) and deep
Q-network (DQN), Dai et al. developed an asynchronous task
offloading algorithm to achieve fast convergence in an asyn-
chronous way [28].

B. Contributions and Organization

In view of the above challenges, we propose a slicing-based
collaborative task offloading framework for SAGVNSs, which
maximizes the number of completed tasks with differentiated
QoS provisioning for task offloading. The main contributions of
the study are three folded:

® A service-oriented RAN slicing framework is presented,
which supports adaptive slicing window duration, multidi-
mensional resource orchestration, and collaborative task
offloading. Based on the queuing model, the decision-
making of RAN slicing and task offloading is modeled
as an optimization problem to maximize the number of
long-term task completions under coupled resource capac-
ity constraints;

® To balance QoS and overhead, an adaptive strategy for
slicing window duration is proposed. During peak traffic
hours, the slicing window length is reduced to facilitate
resource reallocation. During off-peak periods, the slicing
window length is increased to reduce overhead. For each
window, an optimization method is applied to solve the
spectrum and computing resource allocation problem for
slices on heterogeneous BSs;

e A task scheduling approach based on the double deep
Q-learning network (DDQN) is developed to determine
task distribution under small timescales among hetero-
geneous BSs, where vehicle speed, driving direction, BS
workloads, and task type are considered. In simulations, the
proposed scheme outperforms existing methods in terms of
adaptability, resource utilization, and task completion rate.

The remainder of this article is organized as follows.
Section II presents the RAN slicing framework, communication
model, and task scheduling framework. In Section III, the joint
optimization of RAN slicing and task scheduling is modeled
as a constrained stochastic optimization problem. Section IV
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TABLE I
MAIN NOTATIONS AND VARIABLES

| Symbols Definition | Symbols  Definition ‘
Qmi,j 0-1 variable for establishing an upload connection | 7/ ; m Downlink transmission rate for task m’s result
a® Workflow scheduling action at epoch ¢ O Reward given by the environment at epoch ¢
A Set of scheduling strategies in window w R0 Set of task receptions of type o in time slot ¢
Ay Set of scheduling strategies in time slot ¢ s Num. of VM instances held by BS j
brmi, 5t 0-1 variable for transferring task m to BS j’ Sjo Num. of VM instances allocated to slice o at BS j
B Set of of ground BS indexes s® Environment state for epoch ¢
cj Num. of subchannels held by BS j s Set of computing resource allocation strategies
Cjo Num. of subchannels allocated to slice o from c; T Set of scheduling slots in slicing window w
cw Set of subchannel allocation strategies U™ Average reward of the system
dm Total service delay of task m W/W Set/Num. of slicing windows
czm Estimated reception time for the result of task m Ym Num. of subchannels allocated to task m
em 0-1 variable for the result return of task m Zm Num. of subchannels allocated to task m’s result
) Duration of slicing window w Aiso Arrival rate of type o tasks in vehicle ¢
H®) Average loss due to incomplete tasks Em Data size of task m
7z Set of vehicle indexes Tm Required num. of VM instances of task m
K Set of drone indexes tm Computation result size of task m
L Set of satellite indexes Um Delay constraint of task m
M%) /M ;TZ) Set/Num. of type o tasks collected by BS j &) Service intensity of offloading queue o
Tm.i,j Uplink transmission rate of task m Lo Average time for tasks of type o

presents the solutions to each subproblem and proposes a joint
optimization framework. Section V describes simulation exper-
iments for performance evaluation. Section VI summarizes the
study and discusses future prospects. The main notations and
variables are listed in Table I.

II. SAGVN MODEL

Fig. 1 shows an SAGVN composed of an LEO satellite con-
stellation, ground BSs, and drones. Ground BSs and drones have
limited coverage, whereas LEO satellites can seamlessly cover
the entire road network. The vehicles are equipped with three
signal transceivers that can connect to satellites, ground BSs, and
drones, while only one can be connected in a single time slot. The
satellites are connected to the core network through the ground
BSs. Drones that support task processing are pre-deployed, and
positions can be adjusted as needed. They can connect to the
ground BSs through a line-of-sight link and interact with the
core network via ground BSs. An MEC-enabled controller is
connected to different types of BSs through wireless relays
or the core network and is responsible for multidimensional
resource allocation on the RAN side and task scheduling among
heterogeneous BSs.

A. RAN Slicing Framework

A service-oriented RAN slicing framework is proposed for
task offloading, as shown in Fig. 2. The physical resources of
each satellite, ground and drone BS are orchestrated into two
service slices 1 and 2, for delay-sensitive and delay-tolerant
tasks. The sets of satellite, ground, and drone BSs are denoted as
L, B, and IC, respectively. The length of the slicing window can
be adaptively adjusted according to network situations (details
in Section IV-B). The time domain is divided into a series of
slicing windows of different lengths, each containing multiple

scheduling slots of equal length. The duration of slicing window
w is denoted as f (W) with a set of scheduling slots denoted
as 7). The spectrum and computing resources are allocated
in units of subchannels and virtual machine (VM) instances.
The number of subchannels and VM instances held by BS j
are denoted as c; and s;:, respectively. At the beginning of
slicing window w, the resources of each BS are sliced according
to task scheduling decisions in window w — 1. Let ¢;, and

8,0 denote the number of the subchannels and VM instances

(w)

allocated to slice o at BS j (with ¢; = 206{172} ¢; o » and

85 = Doe{1,2) sg-f‘;)). The resource slicing strategy continues
until the end of slicing window w. At the beginning of each
scheduling slot in 7(®), the controller transfers the collected
tasks to appropriate BSs for processing. BSs allocate resources
for received tasks and transmit the computation results back to
the original vehicle. At the end of each slicing window, the task
scheduling decisions in this window are collected for the next
window.

B. Communication Model

Since a long distance separates a satellite and a vehicle, the
influence of vehicle movement on vehicle-to-satellite channel
gain can be neglected in a small area. The average channel gain
of vehicle ¢ within the coverage of BS j € £ U B U K is denoted
as g; j, which is quantified using the method described by Erceg
etal. [29].

The transmit powers of vehicle ¢ and BS j are denoted as p;
and p;, respectively. During communication with BS j, other
BSs can interfere with vehicle 7. Spectrum resources in a slice
are allocated to each vehicle in units of mutually orthogonal
subchannels [30], [31]. Assume that the bandwidth of each
subchannel is h. Let y,, denote the number of subchannels
allocated to task m. The uplink transmission rate when vehicle
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Fig. 1. SAGVN scenario.

1 submits task m to BS j is calculated as

DiGi,5
Py 9y + 02
7'eLUBUK\{j}

1+

)

Tmyij = Ymhlog,

where o is the average background noise. Let z,, denote the
number of subchannels allocated to the computation result of
task m. The downlink transmission rate of transferring the com-
putational result of task m from BS 5’ to vehicle ¢ is calculated
as

Dj'9i,j

> Digijto?
JELUBUK\{j"}

1+

2

Tirsm = Zmhlogy

C. Task Scheduling Framework

A BS-collaborative framework is designed to take into ac-
count the high-speed movement of vehicles. Task offloading and
processing no longer rely on a single BS but allow execution
at two different BSs. Each BS has processing queues 1 and 2,
to buffer delay-sensitive and delay-tolerant tasks, respectively.
Similarly, the MEC controller has offloading queues 1 and 2 to

<S5 Cellular-Vehicle Communication (——
<SS Drone-Vehicle Communication \'\f—
< Satellite-Vehicle Communication

—=1=" Drone-Cellular Communication (, —

— - —- Wired Network Connection T
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MEC controlle/

7\:>Cellular Coverage
Drone Coverage

:if)Satellite Coverage

buffer the two types of tasks received from heterogeneous BSs.

According to network situations, these tasks are transferred to

different BSs for collaborative processing. Two examples are

described below.

1) Scheduling of delay-sensitive tasks: In Fig. 3(a), a vehicle
is located within the coverage of the satellite and ground
BS 1 when a task is generated. According to the principle
of proximity, the task is collected by ground BS 1 and
transferred to offloading queue 1 of the MEC controller.
According to the direction and speed of the vehicle, the
satellite and drone are selected as candidate collaborative
BSs. Due to the low latency requirement, the controller
selects the drone, which has a low load, to process the
task, where the drone follows the first-come-first-serve
(FCES) rule to allocate resources for the task and transmit
the processed results back to the vehicle.
2) Scheduling of delay-tolerant tasks: In Fig. 3(b), a vehicle

is within the coverage of the satellite, drone, and ground
BS 2. The drone receives the generated task and transfers
it to offloading queue 2 of the controller. Based on the
speed and direction of the vehicle, the satellites or ground
BS 2 are listed as candidate collaborators. The controller
selects the satellite with a low load to process the task.
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Fig. 2.  RAN slicing framework for vehicle task offloading.

From the above examples, task scheduling should consider
vehicle speed, driving direction, and BS workloads.

We next derive task service delay based on queuing theory.
Each computation task is characterized by four parameters
{&€m:s Tm, tm, Vim } extending from [15], [32], where &,,,, Tins Lins
and v,,, denote the task data size, the required number of VM
instances, task computation result size, and delay constraint of
task m.

1) Offloading Delay: The offloading delay (e.g., step (1) in
Fig. 3(a) and (b)) refers to the time taken from a task being
uploaded by the receiving BS to the offloading queue at the con-
troller and transferred to the processing queue at the cooperating
BS.

Denoted by Z the vehicle set. The set of type o tasks collected
by BS j is denoted as /\/l(w with M (e ) being its cardinality,
in whicho =1 and 0 = 2 represent delay sensitive and delay-
tolerant task types. Let a,, ; ; = 1represent that vehicle i and BS
7 establishes an uploading connection for task m, and otherwise,
ai,m,; = 0. According to (1), the average delay to upload a type
o task from a vehicle to a BS is

> > > (Emmyi/Tmiig)

JELUBUK e pm(w) €T

(w) — g0
Hg SEEE )
FELUBUK 70

The task arrivals for individual vehicles and BSs are modeled
as Poisson processes as in [32]. Denote A( w) as the arrival rate
of type o tasks at vehicle i. The task arnval rate of offloading

queue o in the controller is expressed as

M= 53T ST N . (4)

JELUBUK /Vlyl;) €T

Only one task is processed at a time. The task offloading pro-
cess is modeled as an M/M/1 queue. The service intensity of
offloading queue o is defined as

(w) 2 A(w) (w). 5)

Enqueueing is determined by task arrival, and dequeuing by task
assignment. When the enqueue rate is greater than the dequeue
rate, the accumulation of tasks may cause an overflow. To ensure
queue stability, (5) must satisfy

) < 1,Vo e {1,2}. (6)

Denote 2(m) as the set of tasks queued before task m. Then,
the offloading delay of task m is calculated as

=2 > >

i€T FELUBUK m/e{Q(m),m}

Gmigem' e (D)

;o
m,e,J

where (,, is the delay for submitting task m via the receiving
BS and forwarding it via the controller.

2) Processing Delay: The processing delay (e.g., step (2) in
Fig. 3(a) and (b)) is the time from when a task enters a processing
queue at a collaborative BS to when the task processing is
completed.
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Fig. 3. Examples of collaborative task scheduling.

The BS allocates VM instances for each task as needed.
Assume that the maximum CPU cycle of each VM instance is
r(maX)Hz per second. If the number of VM instances allocated
by BS j for task m is s,,, the average processing time of the
tasks in processing queue o in window w is calculated as

(w)__1

Tm
Mj',O: (w) Z SmT(max) : ®)

J'o mGM(.}U)
i’

The tasks in the offloading queues in the controller are dis-
tributed to the processing queues of different BSs. Let b, ; j» be
1 if the controller transfers the task m generated by vehicle ¢ to
BS j' for collaborative processing, and otherwise be 0. In slicing
window w, the proportion of tasks assigned by the controller to
BS j is expressed as

2 X

(= mEMyUZ

bim,i,j

(w)
77]0_2

€T () 'ELUBUK

©))

b i,j
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The arrival of tasks in processing queue o at BS j' is also
assumed to follow a Poisson process, where the task arrival rate j'
is n(w) () The task processing is modeled as an M/M/1 queue.
Based on (4), (8), and (9), the service intensity of processing

queue o in the BS is defined as

Py S 5. (10)
Similar to (6), (10) must satisfy
P <1,V € LUBUK, 0 € {1,2}. (11)

At BS j/, the set of tasks queued before task m is denoted as
W/ (m), and the processing delay of task m is calculated as

Ww=> > >

i€ m'e{¥ ;i (m),m} j'€LUBUK Sm

m,z,] ' Tim/!
T(nlax) . (12)

3) Handover Delay: Afterataskisprocessed at collaborative
BS 7, the BS sends the result back to the vehicle (e.g., step (3)
in Fig. 3(a) and (b)). Based on (2), the delay for BS j’ to hand
over the computation result of task m to vehicle i is

dP =>"

i€l §'eLUBUK

bm,i,j’bm

13)

Tj'im

Suppose that task m issued by vehicle 7 is assigned to be
processed by BS j'. If the speed vector of vehicle 7 is ¥; and the
remaining driving distance to leaving the coverage of BS j' is
w;, 5, the remaining time for vehicle ¢ to receive the computation
result of task 1 is estimated as

=2 >

i€l j'e LUBUK

bm w’ww

+ 0, (14)

where g is an adjustable parameter related to special events. For
instance, when vehicle ¢ is about to encounter a red light, o can
be set to the duration of the red light.

Combining (14) and v,,, the deadline of task m generated by
vehicle ¢ is rewritten as

min {l/m, dom, } .
Factors such as driving direction variations may also cause its
failed encounter with collaborative BS ;. In this case, even if

the task is processed by BS j' within (15), the result cannot be
transmitted back to vehicle :.

s)

III. PROBLEM FORMUATION

In the proposed framework, a challenging problem is the joint
optimization of slicing window division, resource orchestration,
and task scheduling.

The total service delay of task m is the summation of (7),
(12), and (13), i.e.,

Ay = dD) + dP) +d® (16)
Based on (15) and (16), we define a binary variable,
. . > >
e A 1,1fm1n{1/m,dm} > dm an
0, otherwise.
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where e,, = 1 if and only if the result of task m is successfully
delivered within the specified time. In slicing window w, the
average reward of the system for completing the tasks is defined

as
vtE ST 3TN Y webmagem,

J'ELUBUK 0€{1,2} i€T e p ()

(18)

where uj , € (0, 1) is the reward factor for the completion of
type o tasks in collaborative BS j'. The average loss due to
incomplete tasks is defined as

H(w) é Z Z Z Z hj’,obm,i,j’(l - em)a
J'€LUBUK 0e{1,2} i€l mEM(,}”l
- (19)
where hji , € {0, 1} is the loss factor for the failure to complete
the tasks of type o in collaborative BS j'.
In slicing window w, the strategy sets of spectrum allocation,
computing resource allocation are denoted by

cw) _ {cgfg)|oe {1,2},je£UBUIC},
and
Slw) _ {ng)|oe{1,2}7j€£UBUK}.

In time slot ¢, the set of task receptions of type o is denoted as
R+, and the set of scheduling strategies is denoted as A; =
{am,i_j, bmyi’jl|i€ I, (XS {1, 2}, me Rt)mj, j/ eLUBU IC}
Given 7 ("), the set of scheduling strategies in slicing window
w is expressed as

(w) =
A = e Ar

The slicing window index set and its set cardinality are
denoted as W and W. The maximization of task completion
under long-term accumulation is modeled as P1.

(w) _ fr(w)
P1l: max lim (U>
{F),AC) ) S}, Wroo £, fw
(w) _ .
06{21:’2}%0 =c¢;,Vj € LUBUK (200)
> s =s;¥je LUBUK (20b)
oc{1,2}
Z Z Z (am,i,jym + bm,,i,jzm)
mERy, o 1€Z jELUBUK
< cﬁ?,‘do e{1,2},teT™ (20c)
s.t. DD b jSm < sﬁ%
MERy,, i€L jELUBUK ’
Yo € {1,2},t € TW) (20d)
_ (w) (w)
iereL%;zu/c Amiiog = 1,¥m € My m UM;2 (20e)
SN by =1LYme MU UMY (0f)
i€ j'e LUBUK ’ ’
(6) and (11). (20g)

The problem is to allocate the spectrum and computing re-
sources to each slice, balance BS loads, and maximize the
long-term average number of completed tasks. Constraints (20a)
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and (20b) demonstrate the requirements on bandwidth and com-
puting resource allocation for slices 1 and 2 at each BS. The
number of spectrum and computing resources allocated to tasks
by each BS should not exceed the total number of resources
held by itself, corresponding to constraints (20c) and (20d).
Constraint (20e) means that each vehicle can only connect to
a unique BS for task uploading, and (20f) ensures that each task
is assigned to a unique BS for processing. Constraint (20g) aims
to maintain the stability of each offloading/processing queue.
Both resource allocation and task scheduling decisions affect
queue stability.

The objective of P1 is a long-term non-smooth maximum
function. Constraints (20e) and (20f) contain two binary integer
variables, and the variables in (20g) are coupled to each other.
Therefore, it is difficult to obtain an exact optimal solution for
‘P1 under conventional optimization methods.

IV. SoLuTiON
A. Problem-Solving Framework

To facilitate processing, P1 is decoupled into three subprob-
lems: 1) adaptive slicing window division; 2) resource allocation
(large timescale), and 3) task scheduling (small timescale).
These are solved alternately by the MEC controller, forming
a closed loop that runs continuously. As shown in Fig. 4, the
behavior of the controller is abstracted as a state machine with
three states, each corresponding to a subproblem-solution mod-
ule. When the system reaches a certain state, the corresponding
function module is activated. The operations of each state are
described below.
o Slicing window adaptation (State 1): When slicing window
w — 1 ends, the controller determines the length f(**) of the
slicing window according to task traffic fluctuation (details
in Section I'V-B);

® RAN slicing (State 2): After the length of slicing window
w is determined, the task scheduling in window w — 1
becomes a known condition for determining resource allo-
cation with respect to C(*”) and S(*) in window w (details
in Section IV-C). Resource reallocation for each slice is
made by the controller at the beginning of each slicing
window, and remains unchanged until its end;
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® Task scheduling (State 3): At the beginning of each
scheduling slot in window w, C (w) and S™) are fed into
a DDQN algorithm to determine task scheduling (details
in Section IV-D). At the end of the last slot in each slicing
window, all scheduling decisions within this window are
saved as .A("“), which are subsequently used to determine
C(w+1) and S+,

The detailed solutions to the three subproblems in the closed-

loop framework are discussed below.

B. Slicing Window Division

In reality, the release of vehicle task requests is time-varying
and uncertain. If resource allocation is performed under a fixed
slicing window mode, the resource scheduling of RAN slices
will be unable to cope with the fluctuation of task arrivals.
During the peak traffic period, the proportions of various types
of tasks will fluctuate continuously and significantly. At this
time, reducing the slicing window length can promote resource
redistribution and adapt to fluctuations in task traffic. In off-peak
periods, the proportion of different tasks is relatively stable [33],
and the window length can be increased to reduce unnecessary
control overhead.

The optimal match between task traffic fluctuation and slicing
window length was explored experimentally. The minimum
adjustment interval of the slicing window length was 10 minutes.
The system first had a preset short window length, which was
then tentatively increased. Multiple initial time points were
selected, and the numerical pairs of task traffic fluctuation and
optimal slicing window length were collected, and fitted as

y = alogex + . 2D

The fitting process is to find o and 3 that minimize the residual
sum of squares. Two fitted curves were generated. Fig. 5(a)
corresponds to the situation where the task traffic continues to
decrease, in which the slicing window length gradually increases
with the decrease of traffic. Fig. 5(b) shows the situation where
the task traffic falls, in which the variation is the opposite of
Fig. 5(a). It can be seen that the more severe the fluctuation of
task traffic, the smaller the optimal slicing window length, which
is as expected.

At the end of window w — 1, the ARIMA-ANN Hybrid
model [34] was used to predict the task traffic at the beginning
of the next window w, denoting the predicted value as w(*).

Fitting of task traffic fluctuation and optimal slicing window duration.
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The ARIMA and ANN models are suitable for processing linear
and nonlinear historical data, and to integrate them can improve
prediction accuracy. Based on (21) and @) the duration of
slicing window w is determined as

o) — {”Aaﬂogz (—2) + 1,2 € (—0,0) )

v [aslogyz + f] o € (0,400)

where z = (w®) — @(@=D) /w(®=D ~ is a constant repre-
senting the smallest unit of slicing window length, and [-] and
|-] denote rounding up and down.

C. Resource Slicing

The resource slicing subproblem is to maximize task com-

pletions by allocating spectrum and computing resources across
RAN slices, i.e.,

(w) _ Hw)
P1.1: max lim Z (U)
{C S}y Wroo £t f)

s.t. (20a), (20b), (20c), and (20d).

According to (18) and (19), the decision of each slicing
window is independent, and the tasks within the window are
independently allocated resources. In the real world, the task
traffic does not fluctuate continuously in adjacent slicing win-
dows. Based on A1 | the controller can calculate the amount
of spectrum and computing resources required for each slice
in window w. Accordingly, P1.1 is transformed to a one-shot
optimization of maximizing task completions in window w as
Pl.1a.

Cc(w)

s.t. (20a), (20b), (20c), and (20d).

P1l.1a belongs to a multi-constraint multivariate function
extremum problem. A Lagrange multiplier was used to solve
the problem by transforming a multivariate and multi-constraint
optimization problem to a multivariate unconstrained extremum
problem. Then P1.1a is converted to P1.1b (shown at the
bottom of this page) by taking C(**) and S(*) as input parameters
to the problem. The optimal resource allocation scheme for
P1.1b can be obtained by gradient descent.
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D. DDQN-Based Task Scheduling

The task scheduling subproblem is to maximize task comple-
tions by selecting collaborative BSs for tasks, i.e.,

H(w)>

) Uw) _
max thOO z;v <f(“’)
we

{Ahierw) wew W

P1.2:

s.t. (20e), (20f), and (20g).

As described in Section IV-C, the resource allocation in each
slicing window is independent. When the resource allocation is
determined, the task scheduling in each slicing window is also
independent. Therefore, the long-term optimization problem in
P1.2 can be decomposed into a short-term optimization problem
for a single slicing window, which is a Markov decision problem
with a finite horizon.

The task scheduling subproblem within a slicing window is
constructed as a Markov decision process (MDP). The MEC
controller is abstracted as an agent, making workflow scheduling
action a*) according to s(¥), the environment state for training
epoch /. The reward given by the environment is denoted as
7. The controller updates the environment state to s(*1)
according to state transition probability Pr(s(+1)|s(?) 4(®)).
The expressions of the state space, action space, and reward
are as follows.

e State Space: Task scheduling should consider real-time
information about tasks, vehicles, slice workloads. Let [;
and ¢, , denote the position of vehicle ¢ and the number
of tasks in processing queue o at BS j. Then the state of
training epoch /¢ is expressed as

14
st = {&m> Ty tams Vm}oe{l.?}.teTW).meR, o

U {l’mvl}’LGI U {0511()))7 gu;)’ Sp] o) }JELUBU}C oe{1,2}- (23)
e Action Space: The workflow scheduling action made by
the system in training epoch £ is

a® = 4O

where A is the set of task scheduling decisions in training
epoch /, i.e., the controller assigns a set of tasks to collab-
orative BSs. Under (20e) and (20f), the decision variable
for each action is O or 1, which is determined by the current
state;

® Reward: The reward reflects the pros and cons of actions
performed in a certain state. The goal of the system is con-
verted from maximizing the number of task completions to

(24)
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maximizing the reward. Based on (18) and (19), the reward
is
r(f)(8(4)7 a(f)) =U® —g®, (25)
where U(®) is the sum of the rewards obtained for com-
pleting the tasks in training epoch 1, and H® is the sum
of the losses for task failures in training epoch ¢. The
task scheduling action decides which BSs cooperatively
handle the tasks. If a task is completed, the environment
will provide a reward to recognize the action. Meanwhile,
a penalty mechanism is intoduced to prevent decisions that
could cause a high BS load or destabilize the processing
queue.
In the MDP, task scheduling refers to the process that the
controller maximizes its rewards by allocating tasks in the
offloading queue to different collaborative BSs,

Pl.2a: Ernealg[(; {5“) ) (s(é),a(e)) |7r],

where [] is the set of all possible task allocation strategies,
and 60 € (0,1) is the discount factor in epoch ¢. Due to the
unpredictability of request releases, state transitions are difficult
to determine. The problem cannot be solved by model-based
methods such as value iteration and strategy iteration [35]. A
realistic solution is to use a model-free scheme that does not rely
on state transition probabilities. However, due to the complexity
of task scheduling in SAGVN:Ss, traditional model-free RL algo-
rithms are unable to process complex action and state spaces. The
DOQN algorithm, as an improvement of Q-learning, does not rely
on prior knowledge and can adapt to large action-state spaces.
DDQN separately trains the evaluation and target networks
to avoid overestimation caused by bootstrapping. Therefore, a
DDQN-based method is proposed for solving task scheduling
on small time scales.

In the state space, the reward of each action is estimated and
stored into a Q-table. The action value function is denoted as
Q(s9,a"). The maximum reward for each state in the Q-
table represents the maximum possible reward in the future. By
querying the Q-table, the action with the maximum reward in
each state is determined as

a® = arg max Q*(s(@, a(e))7a(e) €. (26)

Pl.1b: F(C™ 8™ k1 ky)
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Algorithm 1: DDQN-Based Task Scheduling.

input : {&,,, T L, Vm}oe{l 2} teT@) meR, ., Y

{lz , Ui }zGI U {CEU:)) ) EU;) ) nguf)) }jE[,UBUIC,OE {1,2}
output: 7*
1 Initialize DDQN parameters and Q(s“)7 a“)) ;
2 Initialize experience replay buffer;
3 Initialize evaluation network parameters by
selecting random weight 0;
4 Initialize target network parameters by 0~ < 0;
5 for episode « 1 to |T(*)| do

6 Initialize s!) by observing the environment;
7 | for < 1to /(M%) do
8 With a probability select a random action a(*),
otherwise select a(®) « 7(5());
9 Execute a©, observe st and reward r(©;
10 Store quadruple (s(l), a® r0) s+ in the
experience replay buffer;
1 if experience replay buffer is not empty then
12 | Sample a batch of quads from the buffer;
13 if (==¢(">) then
14 L Q(s9,a")0) + r®); Break;
15 else
16 Q(sM,a®|97) «
r@ 4+ max Q' (s, o* ) |9-);
17 Update the (évaluation network
parameters via gradient descent 6;
18 7(s®) « arg max Qs a*®19);
19 0~ < 0 every k iterations;

20 return Strategy set 7* in slicing window w

Applying the Bellman equation to (26), the value in the Q-table
can be obtained as

0 (S<e+1>’ a(e+1>) -0 (Sw)’ a(e)) +o {Tw) 1 v max Q(S(f-&-l))
12

% a<2+1>) _ Q<S<@’ a(e))}’

where ¢ is the learning rate and v is the greedy probability.

As shown in Fig. 6, the DDQN-based workflow schedul-
ing scheme uses two neural networks (an evaluation net-
work and a target network) with the same training struc-
tures. DDQN-based collaborative task scheduling is named as
Algorithm 1. Compared with DQN, Algorithm 1 adds two
modules: the experience replay pool and the target network.
The experience replay mechanism builds a data pool, storing
data obtained during the model and environment interaction in
the form of (s(),a(®) () s(*+1)) as samples. The samples
are randomly selected from the stored memory data units to
update the parameters of neural networks. Since s(*) and s(+1)
estimated by DQN are time-dependent, DQN suffers from over-
estimation bias with a reduced training effect. The experience
replay pool in DDQN randomly selects samples during neural
network training. Disrupting sample correlation and using data

27
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Fig. 6. DDQN structure for task scheduling.

multiple times helps to make better task-offloading decisions
than DQN. In addition, the evaluation network and target net-
work have the same structure and asynchronous parameters,
where 6 is used to select an optimal action, and 6~ to evaluate
the Q-value of the action. The single neural network in DQN
determines both action selection and strategy evaluation. The
training of this network relies on (26) for parameters update.
From (26), continuing to estimate based on valuation will bring
about overestimation. DDQN separates action selection and
strategy evaluation from each other. The evaluation network
is used to select the optimal action. After the k-step iterative
calculation, the evaluation network weight (#) is copied to the
target network weight (67) for evaluating the Q-value of the
optimal action. By delaying parameter updates, DDQN reduces
the correlation for evaluation and target networks, reducing the
risk of overestimating Q-values.

E. Computational Complexity Analysis

The advantage of the proposed DDQN-based algorithm is
that each time slot can process a batch of computing task
requests simultaneously, with improved processing speed and
environmental adaptability. In this subsection, we analyze the
complexity of Algorithm 1 by comparing it with the DQN
algorithm. Assume that the computational complexity of DQN
training N training episodes is O(N). DDQN adds a target
network based on DQN to reduce the negative impact of data
correlation. However, this neural network does not require ad-
ditional training, and its weight parameters are copied from the
evaluation network every k-step. a* is selected by the evaluation
network, and Q(s, a*) is obtained from the target network. In this
way, the action selection and the strategy evaluation operations
are separated to reduce data correlation. Compared with DQN,
the proposed DDQN-based algorithm improves the rationality
of decision-making with almost no increase in the cost of model
training. Accordingly, the complexity of Algorithm 1 can be
approximated as O((1 + 1/k)N).
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Fig. 7.  Effect of training epochs.

V. PERFORMANCE EVALUATION

Simulations were carried out to verify the effectiveness and
superiority of the proposed method. For a four-lane highway
that is 1,000 meters long; the origin was set at the starting
point of the highway. The scenario contained two ground BSs,
three drones, and one satellite. The satellite covered the entire
highway, and the two ground BSs each covered about 500 m.
The drones hovered above the highway at an altitude of 120 m,
with an effective coverage radius of 80 m. The satellite, ground
BS, and drone have the transmit powers of 27 w, 40 dBm, and
0.1 w, respectively. The traffic flow trace was selected from
OpenITS,' an open road network traffic data platform. The
vehicle density was set to 0.4 vehicles/m?. Autonomous vehicle
platooning and HD map downloading simulate delay-sensitive
and delay-tolerant tasks. The CPU of the model training platform
is AMD Ryzen5 3500X with six cores and six threads, and
the graphics card is NVIDIA GeForce GTX 1660 SUPER.
Default simulation parameters are shown in Table II, where
the deadlines of latency-sensitive and latency-tolerant tasks and
the computation result size are randomly generated in the given
ranges.

Four methods were selected as baselines, each including three
functional modules: slicing window adjustment, resource alloca-
tion, and task scheduling. Table III presents the implementation
details of each baseline.

A. Effect of Training Epochs

We evaluated the effect of the number of training epochs on
performance. The DRL-based algorithms used the same settings
with 4,000 pieces of data. In DRL, the learning speed and train-
ing effect are affected by the update period and learning rate. The
agent’s propensity for long- and short-term rewards is affected
by the discount rate in the cumulative discounted reward. In
the simulation regarding Fig. 7(a), we studied the reward and
convergence of the proposed method with initial learning rates
of 0.1, 0.005, and 0.001. Model training was performed offline.
The training time was similar, taking about 12 minutes to execute
100 training episodes. There was a proportional relationship

![Online]. Available: Www.openits.cn

TABLE I
DEFAULT PARAMETER SETTINGS

Parameters Values
Background noise power (o?) -110 dBm
Bandwidth of each subchannel () 180 kHz
CPU cycle of each VM instance (7 (max)) 10 GHz
Number of subchannels held by each
ground/drone/satellite BS 15/10/40
Number of VM instances held by each
ground/drone/satellite BS 15/8/30
Deadline of delay-sensitive/-tolerant task  0.05-1s/3-10s
Arrival rate of delay-sensitive/-tolerant 4/20 req/
tasks at vehicle 7 (Ai;1/ i 2) req/s
Data size of delay-sensitive/-tolerant tasks ~ 2000/9000bits

Computation result size of task m (tm) 1000-5000bits

TABLE III
IMPLEMENTATION OF BASELINE APPROACHES

Baseline Slicing Resource Task
approach window allocation Scheduling
Baseline-1 | Static [15], [36] | Section 4.2 Section 4.3
Baseline-2 | Static [15], [36] | Section 4.2 DON [37]
Baseline-3 Section 4.1 Section 4.2 DON [37]
Baseline-4 Section 4.1 [16], [36] | Max-SINR [38]
Baseline-5 | Static [15], [36] [16], [36] | Max-SINR [38]

between the reward and the number of completed tasks. In the
first 20 training epochs, the rewards first increased rapidly, and
then the increase slowed. Due to randomly selected parameters,
the agent could not adapt to the environment at the initial stage.
Only after learning with a large amount of data could the data
correlation be captured and the parameters updated. When the
learning rate was at a high level of 0.1, the reward obtained by
the proposed solution converged to a maximum value of 1,500.
The reward fluctuation throughout the process was apparent.
When the learning rate was 0.001, the reward converged to
about 2,700, where the system fell into a local optimum, and
the training effect could not be improved even by increasing
the training epoch. The algorithm’s performance with a learning
rate of 0.005 was better compared to the other two learning rates.
Not only was the highest reward obtained, but the training effect
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steadily improved with the increase in the number of training
epochs. The reward value rose to 3,157 when training epochs
reached 100.

Fig. 7(b) shows the number of tasks completed by different
methods. Baseline-4 only considered link quality, and did not
involve model training, hence its results are used as a refer-
ence. After five training epochs, the number of completed tasks
by the proposed algorithm and baseline-3 surpassed that of
baseline-4 and then continued to rise steadily. The number of
tasks completed by the proposed scheme was always higher than
baseline-3. As seen in Fig. 7(c), the task failure rate of baseline-4
remained at 29%. As a variant of DQN, DDQN reduces data
correlation, and thus has better learning and convergence per-
formance. After 100 training epochs, the task failure rates of
the proposed method and baseline-1 were about 21% and 25%,
respectively. The former was always lower than the latter.

B. Impact of Slicing Window Strategy

We verified the performance of the proposed adaptive slicing
window strategy. As seen in Fig. 8(a), with the increase of the
ratio of delay-sensitive tasks, the task failure rate of baseline-1
and baseline-2 with static slicing window showed an upward
trend. Yet, the proposed method and baseline-3 with dynamic
window division had stable task failure rates, indicating that the
proposed slicing window mode had high adaptability to work-
load fluctuations. Fig. 8(b) shows the number of slicing windows
generated by different methods within two hours. When a new
window arrives, the controller will trigger resource reallocation
of RAN slices, resulting in a huge signaling overhead. From
Fig. 8(a) and (b), the number of windows and the task failure
rate of the proposed method were lower than those of baseline-1,
suggesting that the proposed method can provide higher-quality
services with lower overhead, validating the effectiveness of
window adaptation.

We further examined the behavior of different slice window
partitioning strategies in response to fluctuations in computing
task requests during morning peak hours (6:00 am to 8:00 am).
The static strategy divided the timeline evenly into two slicing
windows (see Fig. 9(a)). In contrast, the proposed strategy
divided the timeline into three slicing windows unevenly (see

Impact of delay-sensitive task proportion under different slicing window
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Fig. 9(c)) by capturing the fluctuations in the number of tasks.
Specifically, the slice window’s length gradually decreases with
an increased task traffic rate. From Fig. 9(b) and (d), the task
completion rate was almost the same from 6:00 am to 7:00 am,
no matter whether dynamic or static strategies were adopted
because the traffic peak had not yet arrived. However, from
7:00 am to 8:00 am, the task completion rate of the proposed
strategy remained above 80%, which was higher than that of the
static window division strategy. The average task completion
rate of baseline-1 with a static policy was only 71%, and that
of baseline-5 was even lower than 50%. During the peak hours
of traffic flow, the number of windows divided by the proposed
scheme may be higher than that of the static strategy. However,
throughout the day, the number of slicing windows divided by
the former was significantly smaller than that of the latter, con-
firmed by the results in Fig. 8. The proposed scheme can enhance
network management’s agility and balance control overhead and
QoS from the above results.

C. Impact of Resources and Workloads

Fig. 10(a) shows the effect of spectrum resources on the task
failure rate when the number of computing resources is fixed at
15. The task failure rate of each method gradually decreased and
stabilized at about 10%. Sufficient spectrum resources enable the
controller to have more options, although not the only condition
for performance improvement. Next, the effect of computing
resources was studied when the number of subchannels was
fixed at 20. In Fig. 10(b), the task failure rate dropped rapidly in
the initial stage, but when the number of computing resources
reached 15, to further increasing the computing resources did
not improve performance. At this time, a bottleneck was created
by the spectrum resources.

Next, we simulated the situation where the number of released
tasks continued to increase over a period of one hour, as shown
in Fig. 11(a). Due to resource constraints, the task failure rate
generally showed an uptrend. Due to the lack of flexibility, the
task failure rate of SINR-based baseline-4 increased from 35%
to 52%, while that of DQN-based baseline-2 and baseline-3
increased from 20% to 31%. However, thanks to the collabora-
tion of heterogeneous BSs, the task failure rate of the proposed
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Slicing window behavior and its effect on task completion rate.
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Impact of the number of available spectrum and computing resources.
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method increased from 18% to 28% and remained lower than
that of the other approaches. Similarly, increases in the propor-
tion of delay-sensitive tasks also decreased the task completion
rate. In Fig. 11(b), when the proportion of delay-sensitive tasks
was 0.2, the task completion rate of baseline-4 was 52%, and
those of baseline-3 and the proposed method were 78% and 85%,
respectively. When the proportion of delay-sensitive tasks was
0.8, the task completion rates of the proposed method, baseline-
3, and baseline-4 were 58%, 53%, and 26%, respectively. The
task scheduling strategy generated by the proposed solution was
more reasonable than other methods.

Lastly, we observed the cumulative distribution function
(CDF) of service latency distribution for those tasks completed
under latency constraints. From Fig. 12(a) and (b), the curves
of the proposed scheme are on the left side of the other ap-
proaches for both latency-sensitive and latency-tolerant tasks,
which means that the proposed solution can handle more tasks
in the same period than other methods.

D. Scalability Analysis

We conducted a scalability analysis to demonstrate the effi-
ciency and robustness of the proposed framework.

1) Scalability at the Service-Type Level: The number of slices
on each satellite, ground BS, or drone can be increased to
support more vehicle services. However, creating more slices
will inevitably increase the pressure on resource allocation, and
more task types require high service stability and robustness. For
the former case, we can refer to the case in Fig. 10, demonstrating
that the proposed framework can maintain an acceptable task
completion rate when communication and computing resources
are insufficient. For the latter case, the results about varying
task proportions, as in Figs. 11 and 12, can be used for refer-
ence, confirming the efficiency and robustness of the proposed
framework.

2) Scalability at the Service-Coverage Level: The considered
scenario, managed by an MEC controller, is reproducible. The
proposed solution is controller-centric and can be deployed to
MEC controllers in multiple areas to extend the service coverage.
The number and position of drones in each service area can be
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adjusted as needed. Using the learning-based approach, each
controller tailors a policy that matches the locale’s environment.
Moreover, the number and location of drones can be adjusted as
needed. After modification and adaptation, the proposed scheme
can be applied to special scenarios (e.g., drone RANS, satellite-
ground networks, and satellite-drone networks).

Besides efficiency and robustness, the proposed framework
keeps the control overhead low through the proposed slicing
window adaptive mechanism and realizes the dual optimization
of QoS and control overhead. This feature is beneficial to support
more types of vehicle services and large-scale scenarios.

VI. CONCLUSION

In this article, we have presented a slicing-based task offload-
ing solution for SAGVNs to support diverse IoV services with
differentiated QoS requirements. Unlike traditional RAN slicing
approaches, the proposed framework integrates slicing window
adaptation, resource slicing, and DDQN-based task scheduling,
with the ability to adapt to vehicle task traffic fluctuations with-
out future information. Trace-driven simulation results confirm
that the proposed algorithm can effectively increase the number
of task competitions, especially in the case of a high proportion
of delay-sensitive tasks. Regarding adaptability, the proposed
scheme is not constrained by the number of drones and deploy-
ment locations. With slicing window adaptation, it can balance
the network-wide control overhead and QoS according to task
traffic variation. For scalability, the proposed framework can
support more vehicle services based on RAN slicing. Algorithms
in this framework can be deployed to MEC-enabled controllers
in different areas to expand service scope. In addition to task
offloading, the proposed framework has the potential to support
services such as content distribution and data collection. Our
ongoing work will develop a federated DRL-based algorithm
for large-scale SAGVNs.
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