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Abstract
Most user-collaborative location privacy protection mechanisms assume that collaborative group members are trustworthy 
and can strictly enforce collaboration rules. Such assumptions do not match reality and reduce the usability of the schemes. 
In this paper, we propose Invisible Man, a blockchain-enabled framework for peer-to-peer collaborative privacy games for 
location-based services. The framework enables users to protect their privacy in extreme environments and allows members 
of a collaborative group without trust to collaborate efficiently. To defend against inference attacks, a user-collaborative 
privacy game model is constructed, and a dual-verification mechanism with Chainlink and Witnet oracles is developed to 
provide security guarantees for model generation. Members can conduct cooperative games under the guidance of the model. 
To realize secure and efficient in-group collaboration, a blockchain-based reward and punishment mechanism for collabora-
tion is designed, integrating token incentives and a blacklisting mechanism to ensure the verifiability and audibility of user 
behaviors. Security analysis and extensive simulation results demonstrate that the proposed scheme achieves high security 
and privacy with low costs.

Keywords Blockchain · Location-based service · Collaborative privacy game · Oracle · Token incentive

1 Introduction

Location-based services (LBSs) provide location-related 
value-added services to positioning devices through mobile 
internet. While bringing great convenience to our lives, their 
extensive use also severely threatens user privacy [1]. Pri-
vacy game mechanisms [2, 3] can tailor protection strat-
egies according to attack means, thus effectively defend-
ing against inference attacks based on user profiles. Such 
methods remain effective even when the privacy protection 
strategies are leaked. Most existing privacy games employ 

a user-centric paradigm [4, 5], adjusting protection policies 
according to user profiles. In contrast, collaborative privacy 
game mechanisms (CPGMs) take a group-centric approach 
and interfere with the attacker’s observations by hiding the 
behaviors of individual users within the group. However, for 
collaboration to be effective, team members must be hon-
est, trustworthy, and comply with the collaboration rules. 
Most CPGMs make such assumptions by default, but this 
is inconsistent with reality with reduced applicability [6].

An effective CPGM must be able to address both exter-
nal threats and internal harms to the group. External threats 
come from untrustworthy LBSs, which can infer secrets 
(e.g., destinations, hobbies, home addresses, workplaces) 
based on historical locations or activity trajectories [7, 8]. 
Internal threats arise from malicious or selfish group mem-
bers. Malicious members may steal sensitive information 
from group interactions, while selfish members may react 
sluggishly or falsely claim that tasks have been completed.

Blockchain originated from Bitcoin technology and is 
essentially a replicated state machine protocol in a Byzantine 
environment [9]. Its decentralized, auditable, and tamper-
proof characteristics can help build more secure distributed 
systems and address the applicability issues of CPGMs. 
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First, the blockchain ledger can permanently store users’ 
historical behaviors, facilitating the record and traceability 
of critical collaboration data and illegal user behaviors. Sec-
ond, incentive mechanisms can curb malicious behaviors 
of users in collaborations, providing an ideal platform for 
regulating collaborative behaviors. The above considera-
tions have driven our development of a blockchain-based 
group collaboration scheme with challenges. Privacy game 
relies on trusted user data off the chain, and the process of 
data being retrieved to the chain carries an enormous secu-
rity risk. Smart contracts deployed on the blockchain can 
collaborate with oracle contracts [10], which opens up new 
ideas to address this challenge.

1.1  Challenges and related works

Mobile Internet is a complex environment, which brings 
many challenges to collaborative privacy protection in LBSs:

1. Collaborative privacy protection: Collaborative pri-
vacy protection mechanisms do not need to rely on 
third-party anonymity servers, and hiding user identi-
ties through collaboration is the focus of researchers. In 
MobiCrowd [11], users search caches from neighbors 
before initiating a query. The query is directly pub-
lished to the LBS if the required content is not found. 
This work provides valuable references. CTPP [12] is 
a virtual machine-based scheme where mobile users 
can communicate with multi-hop neighbors and share 
cache information. EPcloak [13] prevents privacy leak-
age when users communicate directly with the LBS. If 
a user cannot obtain service locally, queries are sent 
to virtual requesters individually. The user’s identity, 
points of interest (POIs), and location are from the 
virtual requester, user, and initiator. Chow et al. [14] 
designed a P2P (peer-to-peer) spatial anonymity strat-
egy where users randomly select k-1 neighbors to form 
an anonymous set, then send the formed hidden area or 
any non-query user’s location to the LBS. Niu et al. [15] 
improved [14] to defend against variance-based attacks. 
Unlike the above works assuming mutual trust among 
group members, P4QS [16] focuses on collaboration 
between strangers. By using symmetric and asymmetric 
encryption, each user only obtains the required informa-
tion, but at the cost of additional system overhead. For 
insecure decentralized systems, Jin et al. [17] proposed 
a security enhancement scheme for data sharing that 
maintains accountability through pseudonymous iden-
tity verification while protecting user privacy. How to 
effectively carry out cooperation and behavior supervi-
sion in a group under the premise of incomplete trust 
needs further research.

2. Privacy games by collaboration: The game mecha-
nism can find the optimal solution to balance the pri-
vacy level and service quality loss while considering 
the demands of both parties. However, most existing 
privacy game models focus on two-party game scenar-
ios. In the zero-sum Bayesian game models proposed 
by Shokri et al. [5, 18], the attacker establishes a one-
on-one game with the user utilizing prior knowledge, 
where the user aims to maximize privacy level while 
ensuring service-quality loss is above a given threshold. 
Shen et al. [19] analyzed trajectory privacy protection 
under quality loss and energy constraints by construct-
ing a one-on-one privacy game centered on the user. 
The optimal data obfuscation problem is transformed 
into a user-attacker privacy game [20], where the joint 
differential-distortion privacy metric ensures privacy 
level and utility cost remain optimal when using a sin-
gle metric. Few studies focused on multi-party privacy 
games in LBSs. Considering multi-party privacy con-
flicts in online social networks, Ding et al. [21] mod-
eled the interaction behaviors among co-owners as a 
multi-participant non-cooperative game, where the 
network structure characterized social relationships 
among co-owners. Hong et al. [4] analyzed strategy 
interactions between users and adversaries in dynamic 
Bayesian games, proving the user’s equilibrium strategy 
depends on the adversary’s capability of accessing geo-
graphic data. In [22], they further studied how multiple 
users collaboratively query with obfuscation to defend 
against inference attacks. The above works focus on 
strategy selection and privacy protection under one-to-
one and multi-party non-cooperative games. Modeling 
a multi-player cooperative game and finding the optimal 
combination of strategies need further investigation.

3. Trust in collaboration: The collaborative privacy 
protection mechanism can avoid the shortcomings 
of centralized management, relying on a trusted third 
party. However, most existing protection mechanisms 
assume that members trust each other. Fewer studies 
have addressed trust and security issues in collabora-
tive LBS queries. Li et al. [23] used anonymous digital 
certificates and anonymous stealth zones to protect the 
privacy and security of vehicles in LBSs, and records 
and maintain the trust values through blockchain to 
defend against various attacks. Feng et al. [24] used 
consortium blockchain to manage trust data and iden-
tify misbehaving vehicles. Their scheme adopted edge 
computing and cross-region anonymizer cooperation to 
construct trusted cloaking areas for efficient location 
privacy preservation. In [25], the authors maintained 
two blockchains simultaneously to store all vehicles’ 
query records and digital certificate information, allow-
ing the authority to track and investigate malicious users. 
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Chaudhary et al. [26] used consortium blockchain to 
realize the decentralized registration and authentication 
of vehicles, and the system’s transparency was achieved 
by storing vehicles’ identities through blockchain. They 
also designed an anonymous communication mechanism 
based on blockchain to hide user identities. In [27], the 
authors realized decentralized vehicular network archi-
tecture and adopted k-anonymous unified technology to 
prevent vehicle location disclosure. The scheme in [28] 
implemented decentralized insurance contract execu-
tion and claim processing and realized personalized and 
dynamic adjustment of auto insurance pricing through 
secure data collection. A blockchain-based data transac-
tion scheme was proposed in [29], which supports fine-
grained data transactions and realizes privacy protection 
through cryptography. These studies show blockchain 
can provide an excellent solution to user collaboration 
security and trust issues.

1.2  Main contributions

This paper proposes a blockchain-based peer-to-peer collab-
orative privacy game framework for LBSs, which includes 
secure CPGM generation and a reward and punishment 
mechanism for collaboration, enabling originally distrust-
ful in-group members to collaborate efficiently and jointly 
defend against external and internal attacks.

• A multi-user collaborative privacy game model is con-
structed, which imposes mobility privacy to reduce the 
probability of actual data being inferred in successive 
queries, and combines distortion privacy to measure 
anti-attack effectiveness. The on-chain and off-chain data 
interactions are achieved through the Oracle mechanism, 
aiming to provide a security guarantee for model genera-
tion. Group members disguise query messages and select 
collaborators under the guidance of the game model;

• A reward and punishment mechanism is designed to 
achieve secure and efficient privacy gaming. Token-
based incentives motivate users to actively participate 
in collaboration by giving them positive rewards, while 
a blacklisting mechanism ensures that user behavior is 
regulated and the gaming process is auditable;

• Security analysis and simulation results demonstrate the 
effectiveness of CPGM in urban areas and suburbs. In 
particular, CPGM can significantly improve the overall 
privacy level over that provided by traditional one-on-one  
privacy game mechanisms. Our findings also indicate 
that simply expanding group size fails to raise user  
privacy levels continuously and can lead to increased 
collaborative costs; fortunately, an optimal group size 
provides a high privacy level at the lowest cost.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system model, consisting of threat mod-
els and design goals. In Section 3, we construct the secure 
generation framework for CPGM and detail its generation. 
Section 4 designs a secure and verifiable in-group collabora-
tion scheme. We conduct security analysis in Section 5 and 
validate the performance through simulations in Section 6. 
Section 7 concludes this paper and discusses future work.

2  System model

Consider a blockchain-based collaborative LBS scenario, 
shown in Fig. 1, in which two types of malicious participants 
exist:

• Suspicious LBS may infer the real identity of queries based 
on the background knowledge and associate the query 
information with their real identities for malicious behavior.

• Untrusted collaborators refer to the group member 
participating in query forwarding and result returning. 

Fig. 1  Collaborative privacy game framework
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They may refrain from responding to collaboration 
requests, forward query results, and even tamper or 
forge query requests and results. Some members may 
cheat smart contracts to obtain repeated rewards for 
legitimate cooperation behavior.

Users on the blockchain network can spontaneously form 
collaborative groups, leverage oracles to retrieve off-
chain data, and generate customized CPGMs. Members 
in each group perform combined queries under the guid-
ance of the CPGM to defend inference attacks based on 
prior knowledge. Meanwhile, an in-group scheme inte-
grating token incentives and a blacklisting mechanism 
is designed to ensure the security and verifiability of in-
group collaboration.

2.1  Scheme overview

As shown in Fig. 1, the proposed framework consists of 
secure CPGM generation and collaborative LBS query, 
where the defined notations and operations are as follows.

• U represents the set of collaborative group members;
• o = {u, s} is the original query information, which con-

sists of the identity of querier u, and s is the secret of the 
querier (e.g., u’s location or preference);

• p1(u
�|o) is a forwarding function for the querier u. When 

o is given, the collaborator u′ for u is determined by sam-
pling from the probability distribution;

• p2(s
�|u�, o) is a fuzzy function for the querier. Given u′ 

and o, it can output a fuzzified secret s′ based on the 
probability distribution. u forwards the generated s′ to 
the collaborator u′;

• o� = {u�, s�} is an LBS query submitted by the collabora-
tor u′ . It is observable by users across the network;

• q(ô|o�) is the inference function held by the listener, 
where ô = {û, ŝ} , and û and ŝ represent estimates of the 
querier’s identity and secret, respectively. After observ-
ing o′ , the listener infers the original querier and secret 
encapsulated in ô by running q(ô|o�).

As shown in the left box of Fig.1, the steps of secure CPGM 
generation are as follows. 

➀ The virtual account of each collaboration group sends 
the address of the profile off-chain storage of the col-
laboration group to the smart contract;

➁ Smart contracts input the profile address to oracles;
➂ The oracle nodes obtain credible user profile data from 

off-chain through the profile address, generate a veri-
fiable CPGM (containing forwarding function p1(u�|o) 
and fuzzy function p2(s�|u�, o) ) based on the profile, and 
sends it to smart contracts (see Section 3 for details);

➃ Smart contracts upload a digest of the function and send 
the function to the virtual account.

As shown in the right-hand box of Fig.1, the steps of col-
laborative LBS query on the blockchain network include. 

➀ When an LBS query is required, u identifies a collabo-
rator u′ based on p1(u�|o) , generates a disguised secret 
s′ based on p2(s�|u�, o) , and then sends the obfuscated 
query o� = {u�, s�} along with hash(o�) to u′;

➁ The collaborator u′ sends to the LBS in his identity to 
shield u;

➂ The LBS processes the query o′ and provides the query 
result to u′ . A suspicious LBS administrator can use 
q(ô|o�) to infer u’s identity and secret;

➃ u′ sends the results of the LBS feedback back to u.

2.2  Threat models

Consider an extreme environment where the threats are 
described as follows.

• Selfishness: Collaborators do not forward queries to the 
LBS or do not return query results to save their resources;

• Data Tampering: Collaborators may publish tampered 
or forged queries that tamper with the returned results, 
resulting in a querier being unable to get correct query 
services;

• Distributed Denial of Service (DDoS) Attack: Mali-
cious nodes send duplicate queries to the LBS to disrupt 
its service functionality;

• Reward Repeat Claim Attack: After completing a task, 
a malicious collaborator attempts to repeatedly claim the 
token rewards of the task by continuously creating new 
identities and accounts;

• Inference Attack: An attacker uses statistical or machine 
learning methods to infer the user identity and secret, û 
and ŝ , of a querier based on a prior disclosure.

2.3  Design goals

Our scheme should achieve the following design goals:

• Privacy Protection: 1) Group members do not need 
to worry about privacy leakage caused by the protec-
tion functions, p1(u�|o) and p2(s�|u�, o) , falling into the 
hands of third parties. Even if the protection is stolen or 
the algorithmic logic is in the hands of an attacker, the 
scheme can still guide the collaborative group to defend 
itself against external attacks effectively; 2) It is difficult 
for an attacker to associate the identity of a querier with 
an LBS request; 3) The real identities of the members of 
the collaborative group are not visible to the public.
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• Security: 1) The source and integrity of the off-chain user 
profile data should be able to be verified; 2) The generation 
process of CPGMs should be auditable and verifiable; 3) 
The protection function should be black-boxed, making the 
outputs difficult to be falsified.

• Trustworthiness: 1) On-chain and off-chain data inter-
actions should be trustworthy so that the final generated 
CPGMs can be trusted and used by users; 2) Abnormali-
ties or irregularities in intra-group collaboration should be 
traced and punished to build trust.

3  Secure CPGM generation

In this section, we explained CPGM construction and explored 
how to secure model generation with the assistance of two 
types of oracles.

3.1  Modeling of collaborative privacy games

Fig. 2 illustrates the collaborative privacy game framework in 
this work, described in detail below.

3.1.1  Defense and attack mechanisms

The Euclidean space scenario in which users can move to any 
location was taken into consideration in this study. Users want 
to protect their secrets through crowd collaboration when com-
municating with untrusted LBS. As shown in the game frame-
work in Fig. 2, we assume that a collaborative group member 
u ∈ U wants to protect his privacy for s ∈ S.To do this, querier 
u needs to choose a collaborator within the group to help him 
release the obfuscated query, o� = {u�, s�} , which consists of 
the following steps.

The choice of the collaborator is affected by the information 
o of the original enquirer, which is determined by the follow-
ing probability distribution.

After identifying a suitable u′ by p1 , u transforms his secret 
s into an observable fuzzified message s′ to prevent s from 
being directly exposed during subsequent transmissions. The 
output of s′ is affected by o and u′ , which is determined by 
the following probability distribution.

p1 and p2 are the pure strategies of exclusively and determin-
istically outputting observable u′ and s′ for secrets u and s.

Given the prior data �(o) , and combining (1) and (2), 
we have

Based on (3), the probability of o′ under condition o is writ-
ten as

The adversary can be seen as an entity aiming to find 
the user’s secret to minimize the user’s privacy by observ-
ing the output of the protection mechanism. An attacker 
can infer the possible privacy set ô = {û, ŝ} from the 
observable privacy set o� = {u�, s�} . We define the prob-
ability distribution of ô = {û, ŝ} being the real privacy set 
o = {u, s} as follows.

The goal of q(ô|o�) is to invert obfuscation mechanisms 
p1(u

�|o) and p2(s�|u�, o) to estimate ô . The inference error 
determines the effectiveness of the inference algorithm, 
which is measured by the distortion privacy metric. Note 

(1)p1(u
�|s, u) = p1(u

�|o) = Pr{U = u�|O = o}

(2)
p2(s

�|u�, s, u) = p2(s
�|u�, o)

= Pr{S = s�|U = u�,O = o}

(3)p(o�, o) = p({u�, s�}, o) = �(o)p1(u
�|o)p2(s�|u�, o).

(4)p(o�|o) = p(o�, o)

�(o)
=p1(u

�|o)p2(s�|u�, o).

(5)q(ô�o�) = 𝜋(ô)p(o��ô)
∑
ô∈O

𝜋(ô)p(o��ô)

Fig. 2  Collaborative privacy 
game workflow
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that q is not simply an inference of Bayesian probability but 
a mobile pattern attack against continuous query scenarios, 
i.e., the attacker can exploit more mobile information with 
the spatiotemporal correlation of consecutive queries.

For any observation o′ , we express the actual querier’s 
o as the probability distribution over the possible loca-
tions ô.

3.1.2  Privacy metrics

Given that users may publish queries continuously, there is 
often a correlation between temporally adjacent queries. The 
attacker can use this correlation [30, 31] to infer the user’s pri-
vate information from multiple consecutive locations. Privacy 
inferred from continuous queries is defined as mobility pri-
vacy [32]. Suppose that the protection functions releases data 
ot

′ at time t and publishes data ot−n� at previous n moments, 
mobility privacy can be calculated as

where subscript n represents the number of historical obser-
vation locations considered when measuring the risk of pri-
vacy leakage. Specifically, the “contextual information” the 
attacker can refer to is positively related to n.

After the observable o′ is released, the attacker gets the esti-
mated value ô by inference on the original query. The weighted 
distance is used to quantify the distortion, which reflects the 
difference between o and ô . Users do not have to worry about 
their information becoming exposed if a sizeable weighted 
distance between o and ô exists.

The privacy gain of the user with secret o is defined as a 
distance between the two data points: d(ô, o) , where ô is the a 
posteriori estimation of the secret. Based on (4), (5) and (6), 
the expected distortion privacy of the group is calculated as 
(8) at the top of the next page.

(6)Pr(ô|o) =
∑

o�∈O

p(o�|o)q(ô|o�)

(7)
q(ô|o�t, o�t−1, o�t−2, ..., o�t−n)

q(ô|o�t)
.

(8)

∑

o∈O

𝜋(o)
∑

ô∈O

Pr(ô|o)d(ô, o) =
∑

o∈O

𝜋(o)
∑

o�∈O

p(o�|o)
∑

ô∈O

q(ô|o�)d(ô, o)

=
∑

o∈O

𝜋(o)
∑

u�∈U

p1(u
�|o)

∑

s�∈S�

p2(s
�|u�, o)

∑

ô∈O

q(ô|o�)d(ô, o)

It is impossible for the attacker to have all the informa-
tion about a user. Thus, there is a discrepancy between the 
inferred user location distribution and that inferred under 
ideal conditions (with all the information known). The more 
minor the discrepancy of d(ô, o) , the greater the accuracy.

3.1.3  Optimal game strategy

To enhance location privacy, we use fuzzy technique [33] 
for the query o = {u, s} . The computational and communi-
cation resources required to perform query fuzzing opera-
tions can be abstracted as a cost function c(o�, o) . Based on 
the cost function, the collaboration cost can be concretely 
calculated as (9) at the top of the next page.

The goal of an attacker is to minimize user privacy, that 
is, to minimize the error between the estimated value ô and 
the original content o, where the distortion-privacy meas-
ures the error. The attacker’s inference is optimal when 
(8) takes the minimum value. Thus, the optimal inference 
attack scheme is expressed as (10) at the top of the next 
page.

From (4) and (5), the attack function is determined by 
p1 and p2 . The mobility privacy is guaranteed if p1 and p2 
satisfies

Let � be the minimum-desired distortion privacy level. The 
user’s average distortion privacy is guaranteed if the obfus-
cation mechanisms p1 and p2 satisfy (12) at the top of the 
next page.

In contrast to the attacker, group collaboration aims to mini-
mize the collaborative cost (9) under privacy constraints (11) 
and (12), i.e., find probability distribution functions p1∗ and 
p2

∗ that is defined to minimize the collaborative cost under 
multiple privacy constraints. Accordingly, the collaborative 
privacy game problem is formulated as

(9)

∑

o∈O

𝜋(o)
∑

ô∈O

p(o�|o)c(o�, o) =
∑

o∈O

𝜋(o)

∑

u�∈U

p1(u
�|o)

∑

s�∈S�

p2(s
�|u�, o)c(o�, o)

(10)

q∗ = argmin
q

∑

o∈O

𝜋(o)
∑

u�∈U

p1(u
�|o)

∑

s�∈S�

p2(s
�|u�, o)

∑

ô∈O

q(ô|o�)d(ô, o)

(11)
q(ô|o�t, o�t−1, o�t−2, ..., o�t−n)

q(ô|o�t)
≤ exp(𝛼).

(12)

∑

o∈O

𝜋(o)
∑

u�∈U

p1(u
�|o)

∑

s�∈S�

p2(s
�|u�, o)

∑

ô∈O

q∗(ô|o�)d(ô, o) ≤ 𝛽
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s.t. (11), (12).
The essence of P1 is to output an optimal pair of p1 and 

p2 from a decision space to minimize collaboration cost 
under privacy constraints.

3.2  On‑ and Off‑chain interaction

As described in Subsection 3.1, CPGM generation relies on 
user profiles stored off-chain due to their large size. This 
motivates us to design an on-chain and off-chain secure 
interaction scheme to achieve trusted data retrieval and 
model generation.

Oracle [10] is a programmable computing platform that 
can be connected to the blockchain through smart contracts, 
and it can fetch off-chain data by calling APIs interfaces 
of external systems. Oracle contracts can be performed to 
verify the authenticity, accuracy, and integrity of acquired 
data. The verified data is uploaded to the chain by the oracle 
contract. ChainLink [34] and Witnet [35] are two types of 
oracle mechanisms. The former can achieve secure off-chain 
data retrieval, and the latter is good at trusted model genera-
tion and verification. They are integrated into the proposed 
framework to improve privacy protection and distributed 
trust. Figure 3 shows the implementation details of our 
designed scheme based on the two oracles.

The virtual account of the collaboration group sends 
members’ off-chain profile addresses to the smart contract. 
Smart contracts further forward the addresses to ChainLink 

P1 ∶min
p1,p2

∑

o∈O

�(o)
∑

u�∈U

p1(u
�|o)

∑

s�∈S�

p2(s
�|u�, o)c(o�, o) contracts. ChainLink nodes are triggered to extract user pro-

file data from corresponding sources by calling APIs. After 
obtaining the profile, ChainLink contracts perform source 
validation, consistency checking, and data integrity verifica-
tion. Legal data is sent to WitnetBridge contracts.

With the profiles filtered by ChainLink, WitnetBridge con-
tracts select trusted nodes to generate a CPGM. Given � and 
� , the Witnet nodes utilize off-chain resources to compute the 
optimal protection mechanisms, p1 and p2 , and obtain its corre-
sponding optimal attack q by solving P1 using linear program-
ming solver. During generation, nodes embed tamper-resist-
ant watermarks [36] into the model and upload intermediate 
data and logs on-chain for full traceability. After generating a 
CPGM, Witnet nodes submit p1 and p2 to WitnetBridge con-
tracts for integrity verification. Upon verification, this contract 
returns p1 and p2 to the requesting smart contract. Smart con-
tracts calculate digests of the protection function parameters 
and only record the digests on the chain. In contrast, embedded 
validity period details in the functions are transmitted to the 
collaborative group’s virtual account to avoid long-term abuse.

This way, a dual-verification mechanism with two ora-
cles is constructed to enable on- and off-chain trusted data 
retrieval and model generation.

4  Incentive mechanisms

As mentioned earlier, a prerequisite for the effectiveness 
of CMPG is the adherence of group members to the col-
laboration rules. A reward and punishment mechanism for 

Fig. 3  On- and off-chain interaction
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collaboration is designed to regulate users’ behavior during 
privacy gaming by integrating token incentives and black-
listing mechanisms.

4.1  Token‑based reward mechanism

Figure 4 shows the intra-group collaboration, consisting 
of three phases: query initiation, query processing, result 
return, and verification and settlement. For the peer-to-peer 
collaboration, we achieve the verifiability of user behavior 
and query results by behavioral evidence and incentives, as 
described below. 

1. Query initiation: Querier u needs to deposit a certain 
number of tokens (denoted as D) in the smart contract 
as a bond, and submit the query hash and timestamp, 
hash(o�) and ts, to the blockchain (see step ➀), to prevent 
duplicate queries and controlling the number of queries. 
Then u encrypts o′ and hash(o�) using the public key KP

LBS
 

of the LBS and forwards them together to collaborators 
u′ (see step ➁), ensuring query content is not stolen.

2. Query processing and result return: The LBS 
decrypts o′ and verifies the uniqueness of it, then relays 

hash(result), hash(o�) back to the blockchain (see steps 
➃ and ➄), for later verification. The smart contract 
incentivizes the LBS by rewarding from u’s deposited 
D, for its correct and proactive evidence provision.

3. Verification and settlement: u verifies result com-
pleteness by retrieving the on-chain hash(result) (see 
step ➆). If complete, u submits confirmation to the 
contract within a time limit (see step ➇). The con-
tract then checks the consistency of hash(o�) submitted 
earlier by u and LBS to confirm if u′ has legitimately 
completed the query submission. After confirming 
u′ has legitimately completed query submission and 
relay, the contract settles the task and pays u’s depos-
ited D to u′ (see steps ➈ and ➉)). The uniqueness of 
hash(o�) also prevents collaborators from duplicate 
reward claims.

This framework can deter malicious behaviors of querier 
u. If u does not submit confirmation in time, D is deducted 
from his deposit to compensate u′ . Preset timestamps 
determine valid queries. Timed-out tasks are auto-settled 
to avoid delays.

Fig. 4  Intra-group collaboration workflow
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4.2  Blacklisting mechanism

The account information of the offending users is recorded 
in a public blacklist on the blockchain. Before forming a 
collaborative group, the smart contract verifies the identity 
of the users who want to join the group, and the users on 
the blacklist are prohibited from entering the collaborative 
group. In this case, users who cannot participate in the col-
laboration can only join the degraded single-player game, 
and the privacy protection effect is significantly reduced. 
Smart contracts verify the behavior evidence submitted by 
the collaborating parties after completion. Once a viola-
tion is found, the user account is immediately blacklisted 
and temporarily stripped of its right to collaborate. The 
smart contract sets the corresponding lock time according 
to the number of violations by the user. During the penalty 
period, the blacklisted users are not allowed to participate 
in any collaboration and will not be removed from the 
blacklist until the punishment period expires. Users who 
frequently violate collaboration rules may permanently 
lose collaboration opportunities. At the same time, the pro-
posed token incentive mechanism can be set up to reward 
long-term compliance users and stimulate their willingness 
to participate in compliance and collaboration. Due to the 
ease of access to publicly stored data on the chain, retriev-
ing the blacklist does not incur additional communication 
and latency burdens.

5  Security analysis

We theoretically analyze whether the proposed solution can 
achieve the design goals.

• Enhanced privacy protection via collaboration: When 
a user plays a single-user game, his collaborator can be 
regarded as himself. In this case, forwarding function 
p1(u

� ∣ o) = 1 , and then p(o� ∣ o) and q(ô ∣ o�) reach 
their maximum value, meaning the attacker’s inference 
achieves the optimal value. When collaborative queries 
are adopted, p1(u� ∣ o) is less than 1. The value of q(ô ∣ o�) 
under a collaborative query is smaller than that under a 
single-user game, weakening the attacker’s inference.

• Resistance to model leakage: The game allows attackers 
and defenders to reach an equilibrium point at which the 
optimal defense and attack are simultaneously obtained. 
Even if the protection model or algorithm logic is com-
promised, users do not have to worry about the failure of 
the protection policy.

• Identity non-correlatability: Since the observed 
o� = (u�, s�) is ambiguous and anonymized, it is difficult 
for an attacker to infer the true identity and secret infor-
mation of inquirer u based on o′.

• Identity invisibility: At the CPGM generation phase, 
interactions between the collaborative group and smart 
contracts are executed by virtual accounts, making the 
real identities of group members untraceable externally.

• Non-falsifiability: 1) A tamper-resistant watermark is 
embedded in the protection functions. Smart contracts 
can verify the watermark to detect if the functions are 
altered; 2) A querier has no reason to forge his obfus-
cated location and cannot accurately predict p2.

• Resistance to DDoS attack: Each initiated query cor-
responds to a query hash, which is non-collisional. Smart 
contracts can determine whether a query has been pro-
cessed before based on the hash of each query, thus pre-
venting DDoS attacks.

• Resistance to reward repeat claim: When settling the 
query tasks, smart contracts label each task ID as “Set-
tle”. When a user repeatedly claims rewards, smart con-
tracts reject those requests according to task status.

• Traceability: Oracle contracts can trace and verify 
the user profile’s source and CPGM generation, while 
smart contracts check and track key results and evidence 
retained on-chain.

6  Performance evaluation

In this section, we simulated multi-user game scenarios by 
generating random user datasets on a Beijing map containing 
various POIs to study the privacy preservation effective-
ness of the proposed method under different geographical 
environments. The attacker inferred users’ precise locations 
based on the maximum mobility speed limit and anonymous 
locations in consecutive queries. We developed a smart-
phone trajectory tracking software to collect mobile user 
trajectories for experiments to evaluate feasibility in real-
world environments. The simulation experiments focused 
on performance metrics, including privacy level and col-
laboration cost. All models were implemented in Matlab 
and Python.

6.1  Single‑ vs. multi‑user game

The proposed CPGM was classified into CPGM-1 and 
CPGM-2. The former considered both mobile privacy con-
straint (11) and distorted privacy constraint (12), while the 
latter omitted mobile privacy. The benchmark methods were 
two single-user privacy game schemes, SUPG-1 and SUPG-
2, improved by [5, 37]. Similar to CPGM-1 and CPGM-2, 
the difference was that SUPG-2 ignored mobility privacy. 
The single-user game means a user can only use the obfusca-
tion mechanism to interfere with the attacker’s observation 
without the cover of a group. Compared with the single-user 
privacy game, the advantage of the multi-user collaborative 
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game is that the individual’s behavior is hidden in the group, 
which reduces the risk of exposing identity privacy and 
query privacy.

Figure 5 gives the comparison when � = 0.1 km, � = 
0.4. Although the time consumption of the group-based 
game was higher, the level of expected privacy was sig-
nificantly higher. The level of privacy protection positively 
correlates with the group size. The proposed multi-user 
game model takes advantage of user correlation, which can 
hide the identity of users and reduce the risk of exposing 
their privacy. In contrast, privacy protection will be weak-
ened when the multi-user game model degenerates into a 
single-user game. In a single-user game, the user alone 
faces potentially malicious entities. Due to the lack of 
cover from other users, a user’s privacy is more likely to be 
inferred and obtained by malicious entities, with a higher 
risk of privacy exposure. In particular, for a collaborative 

group of 20 people, the privacy level obtained through the 
group game has shown a clear increasing trend, the pri-
vacy level can reach 85%, while the cost increases slowly, 
showing good performance; however, as the group size 
increased, the privacy level flattened out while the time 
consumption increased rapidly. While larger group sizes 
are theoretically conducive to better camouflage, this 
result suggests that simply increasing group size is not a 
good option. The best trade-off between privacy protection 
and execution efficiency is achieved when the group size 
reaches 20 people. Further reductions in completion time 
can be achieved with efficient computational techniques.

6.2  Impact of POI density

We examined the impact of POI density on privacy pro-
tection. Twenty users were set to experience LBS in three 

Fig. 5  Impact of urban areas and group size on CPGM
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Beijing areas with different POI densities, where the city 
center Haidian had the highest density and suburban Yan-
qing the lowest.

Figure  6 provides the level of privacy protection for 
CPGM-1 in the three regions and the corresponding cost 
of collaboration. Users in the Haidian district can achieve 
a higher level of privacy at a lower cost. However, there is 
a higher cost of cooperation to achieve the same level of 
privacy in the Yanqing District. CPGM-1 achieves satisfac-
tory privacy protection in areas with high POI density, and 
even in suburban areas, it still protects at least 74% of pri-
vacy. The difference between the three sub-figures in Fig. 6 
shows that as the average distance between users increases, 
the collaboration cost consumed by CPGM-1 to achieve the 
same level of privacy protection increases, but the overall 
fluctuation range is insignificant. In general, CPGM can help 
users better hide in areas with high POI density and dense 
membership and achieve higher privacy protection with low 
collaboration costs.

We developed a software tool to collect real trajectory data 
from 50 mobile devices instead of simulated data. Under the set-
tings of � = 0.1km and � = 0.4 , Fig. 7 shows the game cost 
increase accompanying elevated privacy levels under different 
mechanisms in different regions. Results intuitively demonstrated 
that incorporating mobility privacy helped defend against mobil-
ity pattern attacks, especially in consecutive query scenarios. 
CPGM-1 played a very positive role in satisfying at least 80% of 
users’ privacy needs. By introducing mobility privacy metrics, 
CPGM-1 improved the average privacy level by about 7%. One 
device in Haidian reached a 98% privacy level, indicating CPGM 
could provide better protection in areas with high POI density. 
For SUPG, the combination of mobility privacy can also improve 
protection. SUPG-1 increases the average privacy level by about 
10% compared to SUPG-2. Although introducing mobility pri-
vacy into a single-user privacy game can improve protection, its 
privacy protection level is not as good as CPGM. In Yanqing 
District, the privacy protection level of devices deployed with 
CPGM-1 is 20% higher than those deployed with SUPG-1.

Fig. 6  Impact of average distance among users on CPGM

Fig. 7  Impact of POI density in urban areas on CPGM
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7  Conclusion

A blockchain-enabled peer-to-peer collaborative framework is 
proposed to enable users to achieve their privacy protection in 
extreme environments and to allow the collaboration of groups 
that initially lacked trust to collaborate efficiently. A multi-
user collaborative privacy game model is constructed for pri-
vacy inference attacks, and the oracle mechanism guarantees 
security. To ensure privacy games’ safety and effectiveness, a 
blockchain-based token incentive and blacklisting mechanism 
are designed to achieve the verifiability and traceability of 
user behaviors. The evaluation results show that the designed 
privacy game can meet the privacy requirements at an accept-
able cost, and the effect is better in the densely distributed 
POI areas. Follow-up work will study the construction of an 
architecture that integrates interplanetary file systems and 
blockchain to support large-scale mobile user scenarios.

Acknowledgements The authors gratefully acknowledge the financial 
assistance provided by the National Natural Science Foundation of 
China and the Natural Science Foundation of Jiangsu Province.

Author contributions Beining Zhang and Hang Shen wrote the main 
manuscript text. Tianjing Wang and Guangwei Bai provided guiding 
ideas and suggestions. All authors reviewed the manuscript.

Funding This work was supported in part by the National Natural 
Science Foundation of China under Grants 61502230 and 61501224, 
the Natural Science Foundation of Jiangsu Province under Grant 
BK20201357, and the Six Talent Peaks Project in Jiangsu Province 
under Grant RJFW-020.

Availibility of supportig data Data sharing is not applicable to this 
article as no new data were created or analyzed in this study.

Declarations 

Ethical approval and consent to participate This article does not con-
tain any studies with human participants or animals performed by any 
of the authors.

Consent for publication All authors agree to publish the paper and 
related research results of the paper.

Competing interests We declare that they have no known competing 
financial interests or personal relationships that could have appeared 
to influence the work reported in this paper. We declare that there is 
no financial interest/personal relationship which may be considered as 
potential competing interests.

References

 1. Jiang H, Li J, Zhao P, Zeng F, Xiao Z, Iyengar A (2021) Loca-
tion privacy-preserving mechanisms in location-based services: 
A comprehensive survey. ACM Comput Surv 54(1)

 2. Pawlick J, Colbert E, Zhu Q (2020) A game-theoretic taxonomy 
and survey of defensive deception for cybersecurity and privacy. 
ACM Comput Surv 52(4)

 3. Do CT, Tran NH, Hong C, Kamhoua CA, Kwiat KA, Blasch E, 
Ren S, Pissinou N, Iyengar SS (2018) Game theory for cyber 
security and privacy. ACM Comput Surv 50(2)

 4. Hong S, Duan L, Huang J (2022) Protecting location privacy 
by multiquery: A dynamic bayesian game theoretic approach. 
IEEE Trans Inf Forensics Secur 17:2569–2584

 5. Shokri R, Theodorakopoulos G, Troncoso C (2016) Privacy 
games along location traces: A game-theoretic framework for 
optimizing location privacy. ACM Trans Priv Secur 19(4):1–31

 6. Xue L, Liu D, Huang C, Shen X, Zhuang W, Sun R, Ying B 
(2022) Blockchain-based data sharing with key update for future 
networks. IEEE J Sel Areas Commun 40(12):3437–3451

 7. Jiang H, Wang M, Zhao P, Xiao Z, Dustdar S (2021) A utility-
aware general framework with quantifiable privacy preserva-
tion for destination prediction in LBSs. IEEE/ACM Trans Netw 
29(5):2228–2241

 8. Backes M, Humbert M, Pang J, Zhang Y (2017) Walk2Friends: 
Inferring social links from mobility profiles. In Proc ACM SIG-
SAC CCS 1943–1957

 9. Eyal I, Gencer AE, Sirer EG, Van Renesse R (2016) Bitcoin-ng: A scal-
able blockchain protocol. In Proc. of USENIX NSDI, pages 45–59

 10. Pasdar A, Lee YC, Dong Z (2023) Connect api with blockchain: 
A survey on blockchain oracle implementation. ACM Comput 
Surv 55(10):1–39

 11. Shokri R, Theodorakopoulos G, Papadimitratos P, Kazemi E, 
Hubaux J-P (2013) Hiding in the mobile crowd: Location pri-
vacy through collaboration. IEEE Trans Depend Sec Comput 
11(3):266–279

 12. Peng T, Liu Q, Meng D, Wang G (2017) Collaborative trajectory 
privacy preserving scheme in location-based services. Inf. Sci. 
387:165–179

 13. Niu B, Zhu X, Li W, Li H (2014) Epcloak: An efficient and 
privacy-preserving spatial cloaking scheme for LBSs. In IEEE 
MASS pp. 398–406

 14. Chow C-Y, Mokbel MF, Liu X (2006) A peer-to-peer spatial 
cloaking algorithm for anonymous location-based service. In 
Proc ACM SIGSPATIAL GIS, pp. 171–178

 15. Niu B, Zhu X, Li Q, Chen J, Li H (2015) A novel attack to spa-
tial cloaking schemes in location-based services. Future Gener. 
Comput. Syst. 49:125–132

 16. Ghaffari M, Ghadiri N, Manshaei MH, Lahijani MS (2017) 
P4QS: A peer-to-peer privacy preserving query service for 
location-based mobile applications. IEEE Trans Veh Technol 
66(10):9458–9469

 17. Jin H, Papadimitratos P (2019) Resilient privacy protection for location-
based services through decentralization. ACM Trans Priv Secur 22(4)

 18. Shokri R, Theodorakopoulos G, Troncoso C, Hubaux J-P, Le Boudec  
J-Y (2012) Protecting location privacy: Optimal strategy against 
localization attacks. In Proc ACM SIGSAC CCS, pp. 617–627

 19. Shen H, Bai G, Yang M, Wang Z (2017) Protecting trajectory 
privacy: A user-centric analysis. J Netw Comput Appl 82:128–139

 20. Shokri R (2015) Privacy games: Optimal user-centric data obfus-
cation. Proc Priv Enh Technol 2015(2):299–315

 21. Ding K, Zhang J (2020) Multi-party privacy conflict management 
in online social networks: A network game perspective. IEEE/
ACM Trans Netw 28(6):2685–2698

 22. Hong S, Duan L (2022) Multi-user privacy cooperation game by 
leveraging users service flexibility. In IEEE Int Symp Info Theory 
pp. 637–642

 23. Li B, Liang R, Zhu D, Chen W, Lin Q (2020) Blockchain-based 
trust management model for location privacy preserving in vanet. 
IEEE Trans Intell Transp Syst 22(6):3765–3775

 24. Feng J, Wang Y, Wang J, Ren F (2020) Blockchain-based data 
management and edge-assisted trusted cloaking area construc-
tion for location privacy protection in vehicular networks. IEEE 
Internet Things J 8(4):2087–2101



2607Peer-to-Peer Networking and Applications (2024) 17:2595–2607 

 25. Li B, Liang R, Zhou W, Yin H, Gao H, Cai K (2021) LBS meets 
blockchain: an efficient method with security preserving trust in 
sagin. IEEE Internet Things J 9(8):5932–5942

 26. Chaudhary B, Singh K (2021) A blockchain enabled location-
privacy preserving scheme for vehicular ad-hoc networks. Peer-
to-Peer Netw Appl 14:3198–3212

 27. Li H, Pei L, Liao D, Sun G, Du X (2019) Blockchain meets vanet: 
An architecture for identity and location privacy protection in 
vanet. Peer-to-Peer Netw Appl 12:1178–1193

 28. Huang C, Wang W, Liu D, Rongxing L, Shen X (2022) Blockchain-
assisted personalized car insurance with privacy preservation and 
fraud resistance. IEEE Trans Veh Technol 72(3):3777–3792

 29. Xue L, Ni J, Liu D, Lin X, Shen X (2023) Blockchain-based fair 
and fine-grained data trading with privacy preservation. IEEE 
Trans Comput

 30. Niu B, Chen Y, Wang Z, Li F, Wang B, Li H (2022) Eclipse: Pre-
serving differential location privacy against long-term observation 
attacks. IEEE Trans Mobile Comput 21(1):125–138

 31. Jiang H, Zhao P, Wang C (2018) RobLoP: Towards robust privacy 
preserving against location dependent attacks in continuous LBS 
queries. IEEE/ACM Trans Netw 26(2):1018–1032

 32. Zhao Y, Chen J (2024) Vector-indistinguishability: Location 
dependency based privacy protection for successive location data. 
IEEE Trans Comput 73(4):970–979

 33. Benarous L, Kadri B (2022) Obfuscation-based location privacy-
preserving scheme in cloud-enabled internet of vehicles. Peer-to-
Peer Netw Appl 15(1):461–472

 34. Breidenbach L, Cachin C, Chan B, Coventry A, Ellis S, Juels 
A, Koushanfar F, Miller A, Magauran B, Moroz D et al (2021) 
Chainlink 2.0: Next steps in the evolution of decentralized oracle 
networks. Chainlink Labs 1:1–136

 35. De Pedro AS, Levi D, Cuende LI (2017) Witnet: A decentralized 
oracle network protocol. arXiv preprint arXiv: 1711. 09756

 36. Bhalerao S, Ansari IA, Kumar A (2021) A secure image water-
marking for tamper detection and localization. J Ambient Intell 
Humaniz Comput 12(1):1057–1068

 37. Shen H, Bai G, Yujia H, Wang T (2019) P2TA: Privacy-preserving 
task allocation for edge computing enhanced mobile crowdsens-
ing. J Syst Archit 97:130–141

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

Beining Zhang received the BS 
degree in Xi’an University of 
Posts and Telecommunications, 
Xi’an, China. She is currently an  
MS student at the Department of 
Computer Science and Technol-
ogy, Nanjing Tech University, 
Nanjing, China. Her research 
interests include blockchain-based 
privacy preservation in location-
based services.

Hang Shen is currently an Associate 
Professor with the Department of 
Computer Science and Technology, 
Nanjing Tech University, Nanjing, 
China. He received the Ph.D. 
degree (with honors) in Computer 
Science from the Nanjing Univer-
sity of Science and Technology. He 
worked as a Full-Time Postdoctoral 
Fellow with the Broadband Com-
munications Research (BBCR) Lab, 
Department of Electrical and Com-
puter Engineering, University of 
Waterloo, Waterloo, ON, Canada, 
from 2018 to 2019. His research 
interests involve space-air-ground 

integrated vehicular networks, network security, and privacy comput-
ing. He serves as an Associate Editor for the IEEE AccEss and Journal 
of Information Processing Systems.

Tianjing Wang holds a BSc. (2000) 
in Mathematics at the Nanjing Nor-
mal University, an MSc. in Mathe-
matics at the Nanjing University in 
2005, and a Ph.D. in Signal and 
Information Processing at the Nan-
jing University of Posts and Tele-
communications in 2009. From 
2011 to 2013, she was a postdoc-
toral fellow with the School of Elec-
tronic Science and Engineering, 
Nanjing University of Posts and 
Telecommunications. From 2013 to 
2014, she was a visiting scholar 
with the Department of Electrical 
and Computer Engineering, State 

University of New York at Stony Brook. She is now an Associate Pro-
fessor with the Department of Computer Science and Technology at 
Nanjing Tech University. Her research interests include integrated sens-
ing and communications for V2X, and artificial intelligence and 
machine learning for future networking.

Guangwei Bai received the B.Eng. and 
M.Eng. degrees in computer engineer-
ing from Xi’an Jiaotong University, 
Xi’an, China, in 1983 and 1986, 
respectively, and the Ph.D. degree in 
Computer Science from the University 
of Hamburg, Hamburg, Germany, in 
1999. From 1999 to 2001, he worked 
at the German National Research 
Center for Information Technology, 
Germany, as a Research Scientist. In 
2001, he joined the University of Cal-
gary, Calgary, AB, Canada, as a 
Research Associate. Since 2005, he 
has been working at Nanjing Tech 
University, Nanjing, China, as a Pro-

fessor in Computer Science. From October to December 2010, he was a 
Visiting Professor with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON, Canada. His research inter-
ests include architecture and protocol design for communication networks, 
multimedia networking, network security, and location-based services. He 
is a member of the ACM and a Distinguished Member of CCF.

http://arxiv.org/abs/1711.09756

	Invisible man: blockchain-enabled peer-to-peer collaborative privacy games in LBSs
	Abstract
	1 Introduction
	1.1 Challenges and related works
	1.2 Main contributions

	2 System model
	2.1 Scheme overview
	2.2 Threat models
	2.3 Design goals

	3 Secure CPGM generation
	3.1 Modeling of collaborative privacy games
	3.1.1 Defense and attack mechanisms
	3.1.2 Privacy metrics
	3.1.3 Optimal game strategy

	3.2 On- and Off-chain interaction

	4 Incentive mechanisms
	4.1 Token-based reward mechanism
	4.2 Blacklisting mechanism

	5 Security analysis
	6 Performance evaluation
	6.1 Single- vs. multi-user game
	6.2 Impact of POI density

	7 Conclusion
	Acknowledgements 
	References


