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MA-DyNN: Modal-Adaptive Dynamic Neural
Network for Crowd-Counting on Consumer Drones
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Abstract—Consumer drones are increasingly used for crowd-
counting in complex environments; however, their deployment
faces challenges from adverse external conditions such as low il-
lumination and inclement weather, as well as inherent limitations
like constrained onboard computational resources. To address
these constraints, we present MA-DyNN (Modal-Adaptive Dy-
namic Neural Network), a lightweight and robust framework that
dynamically adapts to varying modality conditions for accurate
crowd counting. This framework employs an efficient single-
stream architecture with specialized modal extractors to capture
and integrate complementary information from both visible and
thermal infrared (TIR) inputs. Based on the extracted modal
features, we design a modality-adaptive gating mechanism to
dynamically select the optimal modality based on environmental
conditions, favoring visible imagery for inference efficiency in
well-lit scenarios and leveraging TIR as auxiliary support under
low-light or degraded conditions. To enhance robustness against
sensor failure or missing modalities, we develop a density-aware
modality converter that adds crowd density constraints to a cycle-
consistent generative adversarial learning framework to generate
high-fidelity TIR images. This enables consistent performance by
aligning synthetic and real TIR-based counting outcomes through
adversarial learning. Extensive experiments on DroneRGBT and
RGBT datasets show that MA-DyNN achieves superior accuracy,
generalization, and real-time performance compared to state-of-
the-art multimodal baselines. Its inference acceleration perfor-
mance approaches single-modality models without compromising
the accuracy gains provided by multimodal learning

Index Terms—Consumer drone, crowd counting, multimodal,
dynamic neural networks.

I. INTRODUCTION

THe rapid advancements in consumer drone technology
have significantly expanded their roles in real-time aerial

analytics, particularly for latency-sensitive applications such
as crowd counting, public safety monitoring, large-scale event
management, disaster response, and urban population stud-
ies [1]–[3], where on-device inference is often preferred to
ensure timely responsiveness. Compared to industrial-grade
drones, consumer drones offer cost-effective and accessible
solutions for data collection and analysis. Their high mobility,
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Fig. 1: Aerial images in low-light conditions.

wide coverage, and flexible deployment facilitate rapid acqui-
sition of aerial imagery, making them highly suitable for com-
plex scenarios. Consequently, they have become indispensable
tools for enabling efficient and scalable visual perception on
edge platforms.

Despite these advantages, aerial imagery captured by con-
sumer drones inherently exhibits scale variations due to fluc-
tuating flight altitudes and dynamic viewpoints. As shown in
Fig. 1(a), the apparent size of individuals varies significantly
between different regions of an image. To address this chal-
lenge, researchers have explored multiscale feature extraction
strategies [4], [5], employing feature pyramid networks [6],
[7] and expanded receptive fields [8] to enhance the ability to
model targets across diverse scales. Beyond scale variations,
real-world environmental conditions further complicate aerial
crowd counting. Most existing methods often assume ideal
conditions with clear visibility, allowing for capturing detailed
appearance and texture features [9]. However, in practical
deployment, adverse weather, overexposure, underexposure,
and shadow occlusion can severely degrade RGB image qual-
ity [10], as illustrated in Fig. 1(a). Under such conditions,
RGB-based counting methods struggle to accurately detect and
identify valid targets. To mitigate these issues, TIR cameras
have been integrated into consumer drones to capture surface
thermal emissions imperceptible to the human eye. As depicted
in Fig. 1(b), TIR images provide essential target-related infor-
mation, such as location and spatial context, complementing
missing details in RGB images [11]. However, TIR imaging
may highlight non-human heat-emitting objects, such as lamp
posts, leading to potential misidentifications. Consequently,
multimodal crowd-counting combining RGB and TIR (RGB-
T) offers improved robustness and reliability [12].
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Leveraging the complementary strengths of RGB-T modal-
ities requires effective fusion strategies, which have evolved
from early-stage simple feature concatenation [13] to high-
order feature interactions based on bilinear pooling [14].
More recently, attention mechanisms have been employed to
adjust the significance of each modality based on contextual
cues [15]. However, these fusion strategies may lead to compu-
tationally expensive multimodal models that are difficult to de-
ploy on resource-constrained consumer drones. Furthermore,
environmental factors such as lighting and weather variations
influence the relative importance of each modality, making
static fusion approaches less effective in varying conditions.

To overcome these limitations, dynamic neural networks
(DyNNs) have emerged as a promising paradigm, improving
computational efficiency and robustness by adaptively adjust-
ing computational paths based on input data features. This dy-
namic inference is well-suited for consumer drones, where on-
board processing power is limited, and real-time adaptation is
critical. Representative approaches include early exiting [16],
layer skipping [17], and selective activation in mixture-of-
experts (MoE) [18]. By leveraging on-demand computation,
DyNNs provide a flexible and efficient framework for multi-
modal fusion, enabling adaptive inference resource allocation
while maintaining high performance on aerial platforms.

A. Challenging Issues and Related Works
Despite recent advances in RGB-T fusion and DyNN

methods, several challenging issues remain in the practical
deployment and online inference on consumer drones:

1) Lightweight multimodal feature alignment. The inherent
spatial misalignment between RGB and TIR modalities makes
directly applying traditional feature extraction impractical. A
common strategy is to employ dual-stream architectures [19],
where parallel branches extract features independently of each
modality. For example, DSCDNet [20] introduces dual-stream
feature extraction across spatial and frequency domains to
enhance RGB-T object detection, while ADNet [21] uses
an asymmetric dual-stream design combined with a feature
interaction module to accommodate differences in information
density between RGB and TIR data. Recent transformer-based
methods, such as M3DETR [22], unify multiple point cloud
representations with multi-scale features for 3D object detec-
tion, while vision-language models, such as Flamingo [23]
and BLIP-2 [24], achieve sophisticated cross-modal reasoning
through attention mechanisms. However, these approaches
are computationally intensive, making them impractical for
deployment on resource-constrained consumer drones where
real-time inference is essential.

2) Modality adaptation in aerial reasoning. In drone-based
perception under diverse environmental conditions, the rel-
ative importance of different modalities varies dynamically
with spatiotemporal context. For instance, RGB data is more
informative during daylight, while TIR is essential at night
or in low-visibility weather. Most existing fusion methods
treat all modalities equally throughout inference, lacking the
ability to selectively activate or deactivate specific sensors
based on current conditions. This leads to unnecessary com-
putation and energy waste. While multimodal learning aims

to exploit complementary information from multiple sources,
prior work [25] has shown that fully processing all modal-
ities can introduce redundancy and increase computational
cost. This highlights the need for adaptive modality selection
mechanisms that dynamically identify the most informative
subset under resource constraints. Some methods, such as
MFGNet [26] and CANNET [27], use attention mechanisms
to weight modal contributions, yet they still rely on complete
modal processing. In contrast, DyNN-based methods like D-
gate [28] and GateNet [29] leverage gating strategies to route
samples through different computation paths based on instance
complexity, offering a viable solution for dynamic modality
adaptation in aerial scenarios.

3) Robustness optimization of multimodal models. During
dynamic deployment, multimodal data captured by onboard
sensors is susceptible to quality degradation or even modality
loss due to hardware limitations or environmental interference.
Cross-modal generation has emerged as a key technique for
reconstructing missing modalities [30]. For instance, Khan et
al. [31] recently applied Pix2Pix GANs to generate synthetic
TIR images from RGB inputs for crowd counting, demonstrat-
ing effectiveness in data augmentation but employing static
multimodal fusion without considering dynamic environmen-
tal adaptation. Li et al. [32] further proposed an invertible
neural network with reversible operations for lossless modality
transformation. Although diffusion models [33] can produce
highly realistic results, their iterative denoising process limits
inference speed. However, many existing approaches lack task-
specific constraints, such as enforcing spatial consistency in
target distributions, making it difficult to preserve structural
and textural features during reconstruction.

B. Contributions and Organization
In this paper, we propose a Modal-Adaptive DyNN (MA-

DyNN) framework that enhances adaptability, robustness, and
computational efficiency for real-time aerial crowd-counting
on consumer drones operating under challenging conditions,
including low illumination, adverse weather, and nighttime.
Our primary contributions are threefold:

• Based on a shared-backbone single-stream architecture, a
lightweight feature fuser (F2) is designed and equipped
with compact extractors tailored to each input modal-
ity. Inter-modal complementarity is reinforced through
a CGAN-based learning process that promotes feature
alignment and consistency.

• A density-aware modality converter (DMC) is devel-
oped for missing modality generation. A pre-trained
crowd-counting model is incorporated to provide spatial
supervision, constraining local object structures in the
CycleGAN-generated TIR images and improving their
fidelity to real TIR distributions.

• A modality-adaptive gating (MG) mechanism is presented
to optimize computational efficiency. By analyzing den-
sity maps produced by dedicated decoders under both
single- and dual-modal inputs, the system dynamically
determines the necessity of TIR input, generating bi-
nary control signals for adaptive modality activation and
resource-efficient inference.
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Fig. 2: MA-DyNN architecture (F2: Feature Fuser; DMC: Density-aware Modality Converter; MG: Modality-adaptive Gating).

Extensive experiments on two authoritative RGB-T crowd-
counting benchmarks, DroneRGBT [34] and RGBT-CC [35],
demonstrate the effectiveness and superiority of the proposed
approach. Specifically, our experimental results provide clear
answers to the following research questions:

• How robustly does MA-DyNN perform under unstable or
missing modality conditions?

• To what extent can MA-DyNN simultaneously optimize
counting accuracy and inference latency in real-time?

• Can MA-DyNN approach the computational efficiency of
single-modality methods while preserving the accuracy
advantages of multimodal integration?

The remainder of this paper is organized as follows. Sec-
tion II details the MA-DyNN architecture, including the FFE,
the MG, and the DMC modules. Section III presents ablation
studies and performance comparisons against state-of-the-art
methods. Section IV concludes this work with discussions on
future research directions.

II. PROPOSED SOLUTION

Airborne crowd-counting demands robust scale adaptation
across varying flight altitudes. Previous approaches for drone
imagery analysis, such as ARCNN [36], primarily enhance
tiny-object detection through specialized mechanisms like pro-
gressive attention and density maps. However, our approach
addresses the more challenging scenario of handling multi-
scale targets and high-density crowd distributions. To address
this issue, we adopt a multiscale receptive field strategy that
integrates simplified altitude-aware scale estimation, adaptive
image cropping, and optimized dilation rate combinations [37].
This strategy employs three adjustable dilated convolutions
with dilation rates represented as triplets Q = (q1, q2, q3),
where different Q configurations are designed to handle differ-
ent crowd scales effectively. This design eliminates the need
for explicit distance measurement while enabling consistent
scale-invariant feature extraction across diverse flight heights.

Built upon this scale-normalized foundation, the proposed
MA-DyNN architecture incorporates dynamic computation
and multimodal fusion through three interdependent modules,
F2, DMC, and MG, as illustrated in Fig. 2:

1) F2. This module is constructed within a CGAN frame-
work, where the generator comprises an encoder-decoder
architecture. The encoder extracts complementary features
from RGB (yellow flow) and TIR (blue flow) inputs, while
the decoder generates the final density map. Meanwhile, the
discriminator determines modality attribution, enforcing cross-
modal alignment. This adversarial design facilitates a shared
representation space that preserves modality-specific benefits
while enabling effective fusion.

2) DMC. This function synthesizes high-quality pseudo-TIR
images from RGB inputs in the absence of TIR data (indicated
by reddish-brown flow). With density distribution consistency
loss, the model enhances structural and contextual alignment
between generated and real TIR images, ensuring reliable
crowd-counting even under partial modality conditions. When
TIR data is available (denoted by a green checkmark), the
system directly employs the real thermal images.

3) MG. This controller can dynamically activate modality
branches based on ambient lighting conditions. Under favor-
able illumination, only the RGB branch reduces unnecessary
computation. The TIR branch is activated in low-light scenar-
ios to enable efficient on-demand multimodal inference.

A. F2 Design

As illustrated in Fig. 2, the proposed multimodal fea-
ture fusion mechanism is built upon a CGAN framework,
comprising a generator and a discriminator. The generator
produces modality-aware features passed through scale-aware
convolution operations before being evaluated by the discrimi-
nator. The discriminator determines the modality origin of the
generated features, thereby enforcing cross-modal alignment
through adversarial learning. This process allows the generator

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2025.3602952

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing Tech University. Downloaded on August 28,2025 at 03:39:33 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 4

to learn modality-consistent representations while preserving
modality-specific characteristics.

1) Generator. The generator serves as the core component
for multimodal feature extraction and density map generation.
Generator’s workflow involves two sequential stages where
input RGB and TIR images first undergo feature extraction
and fusion, followed by density map generation to produce
accurate crowd counting results. Specifically, due to the spatial
distribution inconsistency between RGB and TIR images, we
must reconstruct the feature extraction method. Unlike two-
stream networks with large parameters, this subsection em-
ploys a universal feature extractor to learn shared parameters,
in which MobileNet v3 [38] is used to construct the shared-
backbone network.

Let (xri , x
t
i) denote a multimodal sample pair, comprising

an RGB sample xri and its corresponding TIR sample xti. Two
lightweight modality-specific feature extractors are integrated
into the backbone network to extract complementary modality-
specific features from each sample, ensuring the preservation
of essential modality information. After extracting universal
(modality-consistent) features via the backbone, these features
are element-wise combined with modality-specific features ex-
tracted from the modality extractors. Taking xti as an example,
the fused feature representation is computed as

f ti = Fu(xti;ϑ
u) + F t(xti;ϑ

t) (1)

where Fu and F t denote the universal and TIR-specific
feature extractors with corresponding parameter sets ϑu and
ϑt. At the j-th convolutional layer, let Wu

j and W t
j represent

convolution parameters for universal and modality-specific
extractors, respectively. The expression in (1) at layer j can
be simplified as

f ti,j =Wu
j × xti +W t

j × xti

= (Wu
j +W t

j )× xti =W T
j × xti

(2)

where × is the convolution operation, and W T
j denotes the

fused convolution parameters, capturing modality-specific rep-
resentation.

Subsequently, the extracted multimodal features undergo
three successive upsampling operations within the decoder
module, restoring them to the original input resolution. Sepa-
rate density maps Mr

i and M t
i are generated for RGB and TIR

modalities, respectively, and fused through a final convolution
operation, yielding the integrated multimodal density map
M∗

i . To achieve stable convergence, we employ a k-iteration
optimization with root-based loss [37]. Given the ground truth
density map M̂i, the training objective for the generator over
a batch I containing I sample pairs is expressed as

LG =
1

I

I∑
i=1

k

√
∥M∗

i − M̂i∥22. (3)

The optimal value of k is determined experimentally, as
detailed in Section III.

2) Discriminator. Based on the adversarial learning principle
commonly used in crowd counting, where the focus lies in dis-
tinguishing predicted density maps from ground truth distribu-
tions, we construct a modality-oriented adversarial framework

that focuses on the feature representation of RGB and TIR
modalities. This enables the two modalities to complement
each other and achieve effective alignment in the feature space.
The discriminator is designed to identify the modality origin
of the features generated by the CGAN. It facilitates alignment
between RGB and TIR modalities by learning to distinguish
between them. The generator outputs modality-specific fea-
tures, which are passed through a 1×1 convolutional layer
followed by a Sigmoid activation to produce SR and ST . These
are concatenated with the RGB image to form a 4-channel
input to the discriminator. A SalGAN-like [39] architecture is
used to predict modality labels and enforce feature consistency
across modalities.

3) Adversarial training. The features of RGB and TIR
modalities participating in adversarial learning are mapped to
the same feature space and then passed through the convolu-
tional layer and Sigmoid function to obtain the discrimination
results of the discriminator. When training the discriminator,
the generator is fixed. The generator parameters are updated
during generator training, while the discriminator’s loss is
backpropagated. Note that the discriminator is only used in
the training phase for adversarial learning between modality
features. The discriminator loss function is expressed as

LD =
1

I

I∑
i=1

[L(D(xri , SR), 1) + L(D(xri , ST ), 0)] (4)

where L(·, ·) is the binary cross-entropy loss, and the targets
1 and 0 represent ground-truth modality labels for RGB and
TIR features, respectively. The final training loss combines the
generator loss and the discriminator loss, expressed as

L1 = LG + LD. (5)

This joint optimization ensures the fused features are not
only effective for crowd density regression but also aligned in
modality representation space, thus enhancing generalization
and robustness during inference.

B. MG Mechanism

Accurate and resource-efficient crowd counting requires
adaptive selection of modality branches based on input scene
characteristics. To this end, this subsection introduces an
MG mechanism that enables selective activation of the TIR
branch under challenging environmental conditions (e.g., low
illumination, dust, or adverse weather), while defaulting to
RGB-only inference when appropriate.

The MG mechanism is implemented as a lightweight binary
classifier that determines whether the TIR modality is nec-
essary, based solely on input RGB images. They are passed
through a shallow convolutional encoder, optimized to extract
global illumination and contextual cues. These features are fed
into a fully connected layer to generate a modality selection
confidence score, guiding the gating decision.

To supervise the training of the binary classifier, we in-
troduce an illumination-adaptive thresholding mechanism that
dynamically adjusts the gating criterion based on ambient
lighting. Specifically, a perceptual luminance score ρi is com-
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Fig. 3: Decision-making of multimodal gating.

puted for each RGB image using the ITU-R BT.6011 standard.
An instance-specific threshold ζi is then calculated as

ζi = exp(−α · ρi) (6)

where α is a scaling factor empirically optimized on the
validation set.

During training, each RGB–TIR pair (xri , x
t
i) is fed into

the network to generate three density maps: Mr
i , produced

using only the RGB branch; M t
i , obtained from the TIR

branch alone; and M∗
i , resulting from the fusion of RGB and

TIR inputs. This setup enables comprehensive evaluation of
each modality’s contribution to the counting performance and
provides supervision signals for the subsequent gating strategy.
The binary gating signal pi indicating the necessity of the TIR
branch is computed as

pi =

{
1, if (M∗

i −Mr
i )/M

∗
i > ζi

0, otherwise.
(7)

pi = 1 indicates that TIR significantly improves counting
accuracy and should be activated, typically observed in sce-
narios with substantial shadowed regions or poor illumination
in RGB imagery. Conversely, pi = 0 implies that RGB alone
provides adequate counting accuracy, allowing the TIR branch
to remain inactive to conserve computational resources and
enhance inference efficiency.

For accurately predicting optimal modality selections, we
employ the following binary cross-entropy loss

L2 = −
I∑

i=1

[pi log(p̂i) + (1− pi) log(1− p̂i)] (8)

where p̂i ∈ (0, 1) denotes the predicted activation probability
from the gating network. This loss encourages the network
to correctly identify scenarios where integrating TIR modality
significantly enhances counting accuracy.

As illustrated in Fig. 3, during inference, the gating network
dynamically selects modality branches based on illumination
conditions. Under favorable lighting (Fig. 3(a)), the RGB
modality alone is sufficient to yield accurate crowd counting
results. Consequently, the TIR branch remains inactive, and
the model outputs the RGB-based density map (Mr

i ). Con-
versely, in poorly illuminated environments (Fig. 3(b)), the
gating mechanism automatically activates the TIR modality
to supplement RGB information, and the model outputs the
fused multimodal density map (M∗

i ). This modality-adaptive

1https://www.itu.int/rec/R-REC-BT.601/
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Fig. 4: Modal transformation framework.

inference behavior ensures accurate crowd counting perfor-
mance under diverse illumination conditions while optimizing
computational resources.

C. DMC Design

In complex scenarios, TIR imagery plays a pivotal role
in crowd counting, especially under adverse illumination.
However, drone-based platforms may occasionally fail to
acquire TIR data due to sensor limitations, environmental
obstructions, or cost constraints. To address such modality
incompleteness, we develop a DMC module that synthesizes
high-fidelity pseudo-TIR images from RGB inputs to support
robust multimodal inference.

Traditional image-to-image translation methods, such as
Pix2Pix GAN [31], typically rely on pixel-level losses (e.g.,
L1 loss and adversarial loss) and require strictly aligned image
pairs. While effective for general translation tasks, these pixel-
level losses treat all spatial regions equally and lack sensitivity
to crowd-relevant structures. Furthermore, they operate in raw
intensity space, making them sensitive to photometric shifts
between RGB and TIR modalities. Although CycleGAN re-
laxes the paired-data requirement by introducing cycle consis-
tency, its adversarial and reconstruction losses mainly promote
visual plausibility and bidirectional domain mapping, without
explicitly preserving spatial crowd distributions critical for
accurate counting.

Inspired by task-guided generative modeling approaches
(e.g., NGGAN [40]), we augment the CycleGAN architecture
with a density map-constrained loss to enforce crowd-specific
spatial alignment, as illustrated in Fig. 4. Specifically, a pre-
trained crowd-counting network is employed as a spatial
mapping function ψ(·), transforming both real and generated
TIR images into corresponding density maps. This enables
the generator to receive task-driven supervision in the density
space rather than raw image space. Let GR→T denote the
generator that translates an RGB image xri into a synthetic TIR
image, i.e., x̂ti = GR→T (x

r
i ). The density map-constrained

loss is defined as the root mean squared error (RMSE) between
the density maps derived from the synthetic and real TIR
images, given by

LDM(GR→T ) = E(xr
i ,x

t
i)∼Pdata(xr,xt)

[
M

(
ψ(x̂ti), ψ(x

t
i)
)]

(9)

where ψ(·) denotes the spatial mapping via a pre-trained
counting model and M(·, ·) represents the RMSE between
two density maps. Unlike traditional losses operating in raw
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pixel space, the density map constraint enforces supervision in
task-oriented feature space, explicitly modeling crowd spatial
distributions. For two images xri and xri′ with similar crowd
distributions but different illumination, LDMC approaches
zero in density space, while pixel-level L1 loss ∥xri − xri′∥1
remains large due to photometric variations. This indicates
that the density map constraint provides photometrically ro-
bust structural supervision. By enforcing consistency between
generated and real samples in density space, this constraint
prevents the generator from converging to visually plausible
but counting-inaccurate local optima. The density map con-
straint provides task-specific gradient signals from the crowd
counting model, ensuring the generator learns representations
directly relevant to downstream counting tasks, thereby en-
hancing task adaptability and training stability.

The adversarial loss used in CycleGAN for the TIR domain
is expressed as

LGAN(GR→T , DT )

= Ext
i∼Pdata(xt)

[
logDT (x

t
i)
]

+ Exr
i∼Pdata(xr) [log (1−DT (GR→T (x

r
i )))]

(10)

where DT is the discriminator for domain T , trained to
distinguish real TIR images from generated ones. The cycle-
consistency loss encourages invertible mappings between do-
mains R and T , expressed as

Lcycle(GR→T , GT→R)

= Exr
i∼Pdata(xr) [∥GT→R(GR→T (x

r
i ))− xri ∥1]

+ Ext
i∼Pdata(xt)

[∥∥GR→T (GT→R(x
t
i))− xti

∥∥
1

]
.

(11)

Combining the adversarial loss (10), cycle-consistency loss
(11), and density map-constrained loss (9), the total objective
for training the DMC is to minimize

L3 = LGAN (GR→T , DT ) + LGAN (GT→R, DR)

+ λLcycle(GR→T , GT→R) + µLDM (GR→T )
(12)

where λ and µ are hyperparameters controlling the relative
weight of cycle consistency and density map constraints. This
enhanced training strategy ensures that the generated TIR
images not only appear visually realistic but also accurately
represent spatial crowd distributions aligned with downstream
counting tasks.

III. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS

Three authoritative datasets containing diverse and complex
scenarios were utilized to enhance the validity and applica-
bility of experimental results. The DroneRGBT dataset [34]
comprises 3,600 RGB-TIR image pairs captured from vary-
ing altitudes under different lighting conditions (dark, dusk,
bright), with crowd densities ranging from 1 to 401 individuals
across diverse scenes including parks, streets, and shopping
malls. The RGBT-CC dataset [35] contains 2,030 image pairs
(640×480 pixels) from urban scenarios, with 1,013 pairs under
bright illumination and 1,017 in dark environments, provid-
ing realistic crowd density distributions. The CARPK [41]
dataset includes 1,448 drone-captured vehicle images from
four parking lots, split into 989 training and 459 testing images
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Fig. 5: MAE and RMSE for different values of k.
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Fig. 6: MAE and RMSE for Q at (large, medium, small) scales.

with 90,000 annotations, enabling evaluation beyond crowd
counting scenarios.

Model training utilized a workstation featuring an Intel
i9-13900K CPU and 128GB DDR5-3600 memory. Graphics
processing was handled by dual RTX 4090 (24GB), while
storage comprised a 1TB NVMe SSD and 6TB HDD. During
training, the Adam optimizer was employed with a learning
rate of 1× 10−5 for density map generation. Adversarial loss
was adopted to optimize the alignment between RGB and TIR
features, utilizing alternating discriminator models. The Adam
optimizer learning rate during adversarial training was set to
1× 10−5. These parameter selections ensured model stability
and convergence, preserving accuracy and robustness in crowd
counting. λ and µ in (12) were set to 0.1. For visualization
purposes, density maps are displayed using a jet colormap
with the colorbar range from 0 to 20, where warmer colors
(red/yellow) indicate higher crowd density and cooler colors
(blue) represent lower density areas.

To determine the optimal k in (6) and the combinations of
dilation rate Q, we conducted a series of experiments on the
DroneRGBT dataset. Fig. 5 shows the best performance at k =
3, which was used in all subsequent evaluations. Moreover, as
shown in Fig. 6, the best accuracy was achieved at different
combinations for different crowd densities: Q = (1, 2, 3) for
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TABLE I: Discriminator composition

Layer Kernel Activation Out-channels

Conv1 3× 3 ReLU 32
Conv2 3× 3 ReLU 32

Max-pooling 2× 2 N/A 32
Conv3 3× 3 ReLU 64
Conv4 3× 3 ReLU 64

Max-pooling 2× 2 N/A 64
Conv5 3× 3 ReLU 64
Conv6 3× 3 ReLU 64

Max-pooling 2× 2 N/A 64
Fc7 N/A Tanh 100
Fc8 N/A Tanh 2
Fc9 N/A Sigmoid 1

small-scale, Q = (3, 4, 5) for medium, and Q = (5, 6, 7) for
large-scale, respectively.

Table I details the discriminator architecture, comprising
six 3 × 3 convolutional layers (Conv1–Conv6) with ReLU
activations, interleaved with max-pooling every two layers.
Three fully connected layers (Fc7–Fc9), followed by Tanh
and Sigmoid activations, output the final domain classification.
This design enabled the discriminator to effectively distinguish
real and synthetic TIR samples.

To comprehensively evaluate the impact of modality selec-
tion and fusion strategies on overall performance and system
adaptability, the proposed approach was categorized into six
variants under diverse inference configurations:

• Proposed-1: Dynamic inference integrating RGB and TIR
modalities.

• Proposed-2: Inference exclusively using RGB modality.
• Proposed-3: Inference exclusively utilizing TIR modality.
• Proposed-4: Simultaneous inference with both RGB and

TIR modalities.
• Proposed-5: Dynamic inference employing RGB and

synthetic TIR data.
• Proposed-6: Dual-stream dynamic inference leveraging

RGB and TIR modalities.
To rigorously evaluate the adaptability and counting accu-

racy of MA-DyNN, several state-of-the-art monomodal and
multimodal baselines were selected for comparative analysis:

1) Single-modal Baselines
• Baseline-1 (MCNN [42]): Employs multiple convolu-

tional branches with varying receptive fields to capture
multi-scale crowd features.

• Baseline-2 (SANET [43]): Integrates scale aggregation
modules to enhance multi-scale representation learning
and counting robustness.

• Baseline-3 (CSRNET [44]): Utilizes dilated convolutions
to enlarge receptive fields, effectively addressing dense
crowd-counting scenarios.

• Baseline-4 (CANNET [27]): Implements context-aware
attention mechanisms to incorporate contextual informa-
tion and improve counting accuracy.

• Baseline-5 (BL [45]): Adopts Bayesian loss functions for
precise point-level supervision in crowd estimation tasks.

• Baseline-6 (AAVCNET [37]): Optimizes aerial-view
counting via altitude-aware spatial feature learning and

TABLE II: Monomodality comparison on DroneRGBT (TIR
and RGB) and CARPK (RGB only) datasets

Method
DroneRGBT CARPK

TIR RGB RGB

MAE RMSE MAE RMSE MAE RMSE

Baseline-1 13.64 19.77 20.45 27.3 19.10 43.30
Baseline-2 12.13 17.52 14.91 21.66 9.8 –
Baseline-3 8.91 13.80 13.06 19.06 11.48 13.32
Baseline-4 7.78 12.31 10.87 17.58 – –
Baseline-5 7.41 11.56 10.90 16.80 9.58 11.38
Baseline-6 8.10 13.09 11.62 17.99 6.6 9.8

Proposed-3 8.31 12.12 N/A N/A 10.24 12.05
Proposed-2 N/A N/A 11.73 17.55 N/A N/A

DroneRGBT (TIR & RGB)

MAE RMSE N/A

Proposed-1 7.26 10.66 –

scale normalization.
• Baseline-10 (LCDnet [46]): Provides a lightweight

model tailored for real-time crowd-density estimation on
resource-constrained edge devices.

2) Multimodal Baselines

• Baseline-7 (RMMCC [35]): Integrates transformer-based
counting with multimodal RGB-T feature fusion to en-
hance crowd estimation accuracy.

• Baseline-8 (CMCRL [47]): Facilitates multimodal feature
alignment and representation learning by enforcing dis-
tribution consistency between RGB and TIR modalities.

• Baseline-9 (MC3Net [48]): Processes RGB and TIR
streams through interactive fusion and cross-modality
compensation, achieving state-of-the-art results.

A. Comparison with Monomodality Models

To demonstrate the superiority of the proposed multimodal
approach over existing monomodality methods, extensive com-
parisons were conducted using monomodality data on both
DroneRGBT and CARPK datasets. These baseline models
were trained and evaluated individually on RGB or TIR data,
with performance metrics summarized in Table II. Specifically,
when utilizing RGB or TIR data alone on DroneRGBT,
Proposed-2 and Proposed-3 exhibited substantial improve-
ments over Baseline-1 to 3, although their performance slightly
lagged behind Baseline-4 and other advanced methods. Similar
trends were observed on CARPK. The comparative anal-
ysis against Baseline-6 and Baseline-5 indicated that our
monomodality approach maintained competitive feature ex-
traction capability. When incorporating TIR modality assis-
tance into RGB-based counting, Proposed-1 consistently out-
performed all monomodality baselines, confirming the multi-
modal integration’s effectiveness. Fig. 7 illustrates density map
visualizations, highlighting that Baseline-4, while proficient in
RGB conditions, struggled in low-light detection. Conversely,
Proposed-1 achieved accurate crowd counting under varying
illumination scenarios, demonstrating its robustness under
unstable or missing modality conditions.
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Fig. 7: Density visualization from DroneRGBT (multimodality
vs monomodality).

TABLE III: Multimodality comparison

Method DroneRGBT RGBT-CC Params
(M)

Delay
(ms)

MAE RMSE MAE RMSE

Baseline-7 6.98 10.25 13.72 18.79 15.8 164
Baseline-8 9.02 15.74 17.94 30.91 13.4 139
Baseline-9 6.98 12.19 11.47 20.59 113.0 235
Proposed-6 7.18 11.43 15.48 24.66 2.8 43
Proposed-1 7.26 10.66 16.39 27.01 2.0 34

B. Comparison with Multimodality Models

This subsection presents a comparative analysis between
MA-DyNN and representative multimodal crowd-counting
models. Proposed-6, designed as a dual-stream network, ex-
tracts modality-specific features using the initial four blocks of
MobileNet V3 [38] for each modality branch. Subsequently,
extracted feature maps are concatenated along the channel
dimension, reduced via a 1 × 1 convolution, and processed
through a regression module to generate the final density map.

Table III details the comparative performance on the
DroneRGBT and RGBT-CC datasets, where Proposed-1
achieves an MAE of 7.26, corresponding to 96.1% of the

state-of-the-art Baseline-9’s accuracy on DroneRGBT. Al-
though Proposed-1 achieves slightly higher MAE compared
to Baseline-9 on RGBT-CC, Proposed-1 achieves satisfac-
tory counting accuracy with substantially fewer parameters.
Notably, Baseline-9’s substantial computational requirements
may not be suitable for deployment on consumer-grade
drone platforms. Furthermore, Proposed-6 utilizes a parameter-
intensive dual-stream design, achieving improved accuracy at
the cost of increased inference latency. Due to multimodal
inference often exhibiting modality redundancy, the proposed
method efficiently and dynamically extracts critical infor-
mation from multiple modalities. Specifically, the decoupled
modality processing design in Proposed-1 enables adaptive
switching to monomodality (RGB-only) inference under fa-
vorable lighting conditions, significantly reducing computa-
tional overhead while maintaining high accuracy. Thus, the
modality-adaptive strategy of MA-DyNN effectively balances
crowd-counting accuracy and inference latency, demonstrating
practical value for real-world drone deployment scenarios.

Inference latency, strongly correlated with environmental
lighting conditions, is summarized in Table III. The average la-
tency is non-linearly related to modality count, highlighting the
efficiency of the proposed multimodal gating strategy, which
dynamically activates TIR processing only in low-light scenar-
ios. Visual results from DroneRGBT and RGBT-CC datasets,
presented in Figs. 8 and 10, reveal substantial false positives
and negatives in low-light RGB-only scenarios (Proposed-2).
The baseline multimodal method effectively captured most
targets under similar conditions; however, Proposed-1 outper-
formed by accurately detecting targets across diverse lighting
situations with fewer errors.

C. Cross-Dataset Performance Comparison

To evaluate the generalization capability of MA-DyNN,
comprehensive cross-dataset experiments were conducted us-
ing DroneRGBT and RGBT-CC datasets. Results summa-
rized in Table IV reveal that MA-DyNN significantly out-
performs Baseline-1 across all conditions. Although MA-
DyNN achieves a slightly higher MAE than the parameter-
intensive Baseline-9 within individual datasets, it exhibits
superior robustness in cross-dataset evaluations, with markedly
less performance degradation. Specifically, when evaluated
from RGBT-CC to DroneRGBT, MA-DyNN demonstrates ex-
ceptional cross-domain stability with MAE increasing by only
1.78, compared to Baseline-9’s increase of 2.05 and Baseline-
1’s substantial degradation of 3.88. Furthermore, MA-DyNN
nearly matches Baseline-9’s performance (9.04 vs. 9.03) while
consuming considerably fewer computational resources. These
findings strongly support MA-DyNN’s suitability and practical
applicability on resource-constrained consumer drones.

D. Inference Performance in Resource-limited Environments

To validate the deployment feasibility of MA-DyNN on
consumer-grade drones, we conducted comprehensive infer-
ence performance evaluations on resource-constrained embed-
ded platforms. Using Docker-based simulation environments
to emulate the computational limitations of the NVIDIA
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Fig. 8: Multimodal density visualization from DroneRGBT (compared with multi-modality models).

TABLE IV: Cross-dataset comparison

Transfer Metric Baseline-1 Baseline-9 Proposed-1

DroneRGBT MAE 25.89 14.29 17.93
↓

RGBT-CC RMSE 40.11 24.52 28.34

RGBT-CC MAE 24.33 9.03 9.04
↓

DroneRGBT RMSE 30.22 15.99 12.39

TABLE V: Reasoning latency on resource-limited platform

Method Param (M) SSIM ↑ PSNR ↑ Latency (ms)

Baseline-1 0.13 0.54 18.2 210

Baseline-3 16.26 0.72 21.70 1880

Baseline-2 0.25 0.59 19.4 230

Baseline-10 0.05 0.60 21.39 100

Proposed-2 2.0 0.68 20.2 220

Proposed-1 2.0 0.75 21.97 470

Jetson Nano, we compared MA-DyNN against several state-of-
the-art lightweight models specifically designed for real-time
inference. As shown in Table V, MA-DyNN achieves notably
higher counting accuracy (SSIM: 0.75, PSNR: 21.97), signif-
icantly outperforming lightweight baselines in both structural
fidelity and perceptual quality.

While MA-DyNN’s multimodal inference incurs a longer
runtime (0.47s) compared to unimodal models such as LCD-
Net (0.10s) and MCNN (0.21s), the added latency is com-
pensated by substantial gains in accuracy through effective
modality fusion. Importantly, MA-DyNN leverages its MG

TABLE VI: Ablation comparison on DroneRGBT

Method MAE RMSE Latency (ms)

w/o CGAN 13.46 21.14 72
Proposed-4 7.11 9.83 87
Proposed-5 8.14 13.24 36
Proposed-2 8.31 12.12 24
Proposed-3 11.73 17.55 27
Proposed-1 7.26 10.66 34

(a) RGB (b) Real TIR (c) Generated  TIR 

Fig. 9: Modality conversion rendering.

module to dynamically bypass the TIR branch under fa-
vorable lighting, enabling fast RGB-only inference (0.22s)
without sacrificing robustness. This adaptive behavior ensures
a favorable trade-off between efficiency and accuracy de-
pending on real-time conditions. Furthermore, as reported in
Table III, MA-DyNN delivers faster inference than existing
multimodal baselines, reinforcing its practicality for deploy-
ment in latency-sensitive aerial scenarios.

To further assess its energy efficiency, we estimated power
consumption during inference using specifications from the
NVIDIA Jetson developer documentation2. The Jetson Nano
supports two official power modes: 5W and 10W. Assuming
deployment under the default 10W mode for peak perfor-
mance, MA-DyNN consumes approximately 4.7J per infer-
ence for full RGB–TIR processing (0.47s), and 2.2J for RGB-
only inference (0.22s). Given a standard drone battery capacity
of 60Wh, MA-DyNN supports around 2.6 hours of continuous
adaptive inference. These results highlight the energy-aware
design of MA-DyNN and confirm its suitability for resource-
constrained aerial scenarios.

2https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3275/index.html
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Fig. 10: Visualization of different ablation stages on RGBT-CC.

E. Ablation Experiments

To validate the contributions and effectiveness of individ-
ual components within MA-DyNN, comprehensive ablation
experiments were conducted on DroneRGBT.

We first assessed the F2’s necessity. As presented in Ta-
ble VI, removing the CGAN-based fusion (forcing modal-
ities to share a common backbone without explicit align-
ment) significantly increased MAE compared to Proposed-1.
This performance degradation highlights interference between
modality-specific features in the absence of effective fusion.
Thus, the CGAN-based approach demonstrates a clear advan-
tage by extracting coherent, modality-aligned representations,
enhancing crowd-counting accuracy.

The contribution of MG in balancing counting accu-
racy and computational efficiency was next examined. Re-
sults in Table VI reveal that activating multimodal gating
(Proposed-1) outperforms monomodality methods (Proposed-
2 and Proposed-3). Conversely, disabling multimodal gating
(Proposed-4), forcing simultaneous dual-modal processing,
yields only a minor improvement in MAE (approximately
2.1%) but incurs significantly higher computational costs. This
indicates that MG effectively prevents redundant computation,
maintaining robustness without sacrificing inference efficiency.

To provide deeper insight into feature alignment effective-
ness, we visualized intermediate density maps generated by
individual RGB (Mr) and TIR (M t) modalities before fusion,
as shown in Fig. 10. For comparative analysis, an early fusion
baseline was implemented using concatenated RGB-T inputs
with CSRNet. The final fusion method (M∗) surpasses the
early fusion baseline, validating the effectiveness and accuracy
advantages of our feature fusion architecture.

We further evaluated the DMC’s effectiveness in synthesiz-
ing TIR imagery. Fig. 11 provides visual comparisons between
real TIR images and those generated by the DMC, demon-
strating that synthetic images preserve object contours and
luminance features. Quantitatively, substituting authentic TIR
images with synthetic counterparts (Proposed-5) results in only
a modest increase in MAE of 9.4% (Table VI). Furthermore, to
quantitatively assess visual and semantic fidelity, we randomly
selected 200 image pairs from the DroneRGBT test dataset and
computed the SSIM and PSNR metrics between generated and
real TIR images. As summarized in Table VII, DMC-generated
TIR images exhibit significantly improved structural similarity
and reconstruction quality compared to baseline generative

TABLE VII: Comparison of generated TIR image quality

Method SSIM↑ PSNR↑
w/o density map 0.3905 24.23
Proposed DMC 0.4788 27.87
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Fig. 11: Sensitivity analysis of ζ.

methods, ensuring robust counting even when one modality
is unavailable.

To investigate the impact of ζ, the threshold in (6), on
model performance, we conducted a sensitivity analysis on
DroneRGBT. In this experiment, the dynamic ζ computation
module was disabled, and the model was evaluated across a
range of fixed values. As illustrated in Fig. 10, increasing ζ
from 0.1 to 0.9 caused the model to increasingly favor the
faster RGB-only inference path, which led to a monotonic
rise in prediction errors (MAE/RMSE) while significantly
reducing inference latency. Crucially, our method exhibited
a clear decoupling between accuracy and latency trade-offs:
the performance equivalence points for these two metrics did
not coincide under any single static threshold. In other words,
no fixed value simultaneously achieved optimal accuracy
and efficiency, whereas our dynamic thresholding mechanism
adaptively selected the optimal modality based on real-time
illumination. This behavior validated the effectiveness of our
adaptive design in achieving both high accuracy and low
latency, surpassing fixed-threshold baselines.
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IV. CONCLUSION

In this study, we proposed MA-DyNN, a Modal-Adaptive
Dynamic Neural Network framework that effectively inte-
grates complementary RGB and TIR modalities for robust
and efficient crowd counting on consumer drones. By lever-
aging the designed F2, DMC, and MG modules, MA-DyNN
achieves a favorable balance between counting accuracy and
computational efficiency under varying lighting conditions.
Extensive experiments on the DroneRGBT and RGBT-CC
benchmarks demonstrate that MA-DyNN consistently outper-
forms state-of-the-art methods in both accuracy and inference
latency. Its adaptive inference strategy attains computational
efficiency comparable to monomodal models while preserving
the accuracy advantages offered by multimodal integration.
Ablation studies validate the effectiveness of the F2 and MG
components in enabling adaptive, resource-efficient inference.
Moreover, MA-DyNN exhibits strong resilience to modal-
ity instability, showing minimal accuracy degradation when
employing synthetic TIR data. These strengths underscore
MA-DyNN’s practical value in real-world consumer drone
applications, including public safety surveillance, urban traffic
monitoring, and crowd management.

Future research directions include incorporating additional
sensing modalities (e.g., LiDAR or radar) to enhance robust-
ness under severe conditions, as well as investigating domain
adaptation methods to improve generalization across diverse
geographical locations and crowd distributions.
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