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Abstract—Misinformation detection in social networks faces
challenges due to complex semantics, scarcity of labeled data,
and rapidly evolving false narratives. To address these issues, we
present LACL (LLM-Augmented Contrastive Learning), a novel
framework that integrates large language models (LLMs) with
contrastive learning (CL) for robust and accurate misinformation
detection. The framework begins with an LLM-driven social me-
dia data augmentation strategy, employing prompt orchestration
to generate diverse yet semantically consistent misinformation
samples. These augmented samples are integrated into a CL-
based detector, where the semantic richness and diversity in-
troduced by the LLM enhance the CL’s discriminative feature
extraction and predictive capability, thus improving generaliza-
tion beyond the original training distribution. To align with CL’s
discriminative goal, we develop a contrastive loss-aware joint
training and fine-tuning mechanism, in which CL’s representation
learning constrains LLM hallucinations and guides augmentation
quality. Through this closed-loop optimization, the CL-based de-
tector progressively absorbs latent semantic knowledge from the
LLM, effectively overcoming semantic complexity and reducing
erroneous generations. Experimental results on four benchmark
datasets (Twitter15, Twitter16, Weibo, and PHEME) demonstrate
that LACL consistently outperforms mainstream deep learning
methods and surpasses approaches that directly apply commer-
cial LLMs for detection without task-specific adaptation. These
gains are observed across different backbone LLMs (Qwen and
Llama), underscoring LACL’s robustness, adaptability to diverse
language contexts, and superior generalization capability.

Index Terms—Misinformation detection, large language mod-
els, contrastive learning, fine-tuning, social networks.

I. INTRODUCTION

The rapid expansion of the Internet has made information
dissemination more convenient and facilitated the spread of
misinformation, leading to significant societal challenges, in-
cluding public confusion and even panic [1]. In response, so-
cial media platforms have implemented measures like manual
content review and account restrictions, which, while effective
to some extent, are costly and susceptible to bias. To enhance
detection efficiency, deep neural networks (DNNs) have been
increasingly employed, leveraging both supervised [2], [3] and
semi-supervised methods [4], [5].
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Although supervised learning has achieved promising re-
sults, its heavy reliance on large-scale labeled datasets and
its inability to adapt to rapidly evolving rumor patterns limit
its long-term effectiveness. Label annotation in this domain
is costly and time-consuming. To address these limitations,
contrastive learning (CL), a promising self-supervised learning
approach, has shown great potential in tasks like semantic
segmentation [6], text classification [7], and named entity
recognition [8]. When combined with graph neural networks
(GNNs) [9], [10], CL enhances misinformation detection by
extracting features from complex data structures, improving
the analysis of content propagation in social networks.

The emotions and opinions expressed by social media users
are essential for assessing content authenticity [11]. User-
generated content, like microblog interactions, reveals how
misinformation spreads and helps understand its dynamics
within networks. However, existing CL-based methods, such
as DropEdge [12], AdaEdge [13], and NodeAug [14], which
integrate GNNs, focus on misinformation propagation and
network structure, often overlooking emotional context and
diverse opinions. Similarly, natural language processing (NLP)
techniques like synonym replacement [15] improve text-level
representation but struggle to capture subtle emotions, sar-
casm, and cultural cues, limiting their effectiveness in captur-
ing emotional responses, underlying motivations, and subtle
cues such as sarcasm or cultural context.

Large language models (LLMs) have transformed NLP by
leveraging vast parameter scales and extensive pre-training to
achieve superior language understanding and capture subtle
semantic nuances [16], [17]. These capabilities enable LLMs
to identify misinformation patterns, implicit logic, and incon-
sistencies, making them powerful tools for rumor detection.
However, directly applying LLMs is prone to generating hal-
lucinations [18], [19], producing plausible content but factually
incorrect. This inherent risk of LLM hallucination is a critical
challenge, especially when employing LLMs for data augmen-
tation in sensitive domains like misinformation detection, as it
can lead to the generation of misleading or counterproductive
training samples. LLMs are also limited by training data
biases and struggle to adapt to rapidly evolving rumor content.
To address these limitations, including the propensity for
hallucination, LLMs’ advanced feature extraction and semantic
understanding capabilities are synergistically combined with
CL. While CL serves as the core detector by learning robust
representations, LLMs enhance performance through diverse,
semantically aligned augmentation. Importantly, a CL-guided
fine-tuning strategy mitigates hallucinations and aligns LLM
outputs with CL objectives.
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A. Challenges and Related Works

Despite the considerable potential, the collaboration be-
tween LLMs and CL faces several pressing challenges.

1) Leveraging LLMs to Overcome Data: Limitations in
the CL framework, including the use of existing detection
datasets often drawn from a single social platform, limit model
generalization across multiple sources. Traditional CL-based
data augmentation techniques, such as synonym replacement
and sentence rearrangement [15], can expand the dataset
size but often fail to capture nuanced semantic features like
sarcasm, metaphors, and implicit suggestions, sometimes even
producing misleading samples. Moreover, rumor propagation
is strongly shaped by social contexts and event backgrounds,
but conventional methods fail to model, limiting their ability
to capture subtle variations in collective behavior. Feng et
al. [20] employed bidirectional multi-level graph CL with
data augmentation to enhance rumor detection. However, the
method struggles to capture fine-grained semantics in complex
contexts and performs less effectively across diverse cultural
backgrounds due to its inability to preserve distinct rumor
styles and propagation patterns. In [21], LLM-enhanced news
reframing was used to inject stylistic diversity. Each news
article was transformed into multiple stylistic variations during
training to increase data diversity and help the student network
learn robust features, which can be seen as a form of unidirec-
tional knowledge transfer from the LLM. However, efficient
data utilization and effective collaboration between the teacher
LLM and the student remain to be explored.

2) Deep Extraction of Representations with Limited Sam-
ples: Effectively extracting deep semantic representations in
social media rumor detection remains challenging due to the
scarcity of samples in current public datasets. Traditional
data augmentation methods [12]–[15] partially mitigate this
issue but primarily focus on shallow text transformations,
failing to achieve substantial semantic enhancement. Thus, CL
frameworks may struggle to capture deep semantic features
in rumor texts, such as discourse logic, argument structure,
and emotional inclination, when constructing positive and
negative sample pairs. Moreover, rumor texts often involve
complex contextual dependencies and implicit semantic links,
which require deep semantic understanding and representation
learning. Liu et al. [22] proposed a fake news detection frame-
work that enhances news graph representation by integrating
content, emotional information, and dissemination structure
using GNNs and edge-aware techniques. However, under low-
sample conditions, the framework struggles to extract deep
semantic and emotional features effectively, limiting its gen-
eralization and early detection accuracy. Thus, a key challenge
is to extract deep semantic features from limited samples using
advanced augmentation and optimized CL training.

3) Synergy of LLMs and CL: DNN models, including CL,
can be integrated through joint training or model concatena-
tion [23]. One straightforward approach is to leverage LLMs’
language understanding capabilities for detection tasks. How-
ever, due to misalignment, these methods struggle to harness
LLMs’ language understanding strength and CL’s feature ex-
traction potential. Hu et al. [24] proposed a fake news detection

method that utilizes ChatGPT as an advisor rather than a
detector, providing multi-perspective reasoning and guidance.
CALRec [25], a sequential recommendation framework, uses
two-stage LLM fine-tuning to align user interaction sequences
and target items, enhancing model performance by maximizing
positive sample similarity and minimizing negative sample
similarity. Dong et al. [26] proposed an unsupervised LLM
alignment method for information retrieval, utilizing proximal
policy optimization (PPO) to optimize LLM parameters. Jiang
et al. [27] introduced CL to enhance multimodal LLMs by
treating hallucinated text as hard negatives. This brings non-
hallucinated text and visual samples closer while separating
non-hallucinated and hallucinated text. In [28], LLMs were
used to extract keywords and assess their relationship weights
through graph Laplacian learning to automatically construct a
knowledge graph (KG). MiLk-FD [29] effectively integrates
the semantic and structural features of news content with
factual knowledge from multiple KGs, resulting in superior
performance in fake news detection. While these approaches
utilize LLMs as data augmentation and KG extraction tools,
they lack direct interlinking and feedback mechanisms. Thus,
a challenge remains in designing a sustainable optimization
method that enables the synergy of LLMs and CL.

B. Contributions and Organization

To address the aforementioned challenges, we propose
LACL (LLM-Augmented Contrastive Learning), a framework
designed to enhance the stability and accuracy of fake news
detection in social networks. In this framework, the LLM’s
advanced language understanding and generation capabilities
compensate for the feature extraction limitations of a CL-based
detector, while CL’s discriminative learning improves LLM
fine-tuning and data augmentation. The key contributions of
this study are threefold:

• An LLM-based data augmentation method is developed
to overcome social network data limitations. This method
leverages the LLM’s knowledge to generate diverse and
semantically consistent misinformation samples, expand-
ing the training dimension of the CL-based detector.

• A LLM-assisted feature extraction and label prediction
method is designed, leveraging the LLM’s semantic un-
derstanding and sample generation capabilities to enhance
CL’s ability to capture deeper representations.

• To align the LLM with the CL’s discriminative objective,
we develop a sustainable joint training and fine-tuning
strategy. The contrastive loss guides LLM fine-tuning and
augmentation strategy updates, where the generated high-
quality data is leveraged to strengthen CL’s feature extrac-
tion and classification capabilities. This closed-loop opti-
mization enables the CL-based detector to progressively
extract implicit knowledge from the LLM, overcoming
its limitations in handling complex semantics.

Experimental results on multiple mainstream social media
datasets highlight LACL’s effectiveness, robustness, and appli-
cability. The research questions addressed include:

• Can LACL consistently outperform the performance up-
per bound of CL baseline methods?
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Fig. 1. LACL architecture.

• What impact do data augmentation rounds and base LLM
parameter size have on detection performance?

• Can multi-round LLM fine-tuning continue to improve
performance, and do marginal effects exist?

The remainder of this paper is organized as follows. Sec-
tion II introduces the LACL architecture, which includes data
preprocessing and prompt engineering, feature extraction and
label prediction, and CL-LLM alignment. Section III presents
datasets, base LLM, and benchmark method selection, as well
as experimental setup. Section IV analyzes the experimental
results and highlights key findings. Finally, Section V con-
cludes the paper and discusses potential future directions.

II. PROPOSED METHOD

Fig. 1 illustrates the LACL architecture, a framework de-
signed to detect false content in social networks by fostering
a symbiotic relationship between a CL-based detector and an
LLM optimizer. This architecture, comprising a data prepro-
cessing module, a prompt orchestrator, a CL-based detector,
and an LLM optimizer, is founded on the principle that CL
and the LLM can mutually enhance each other. The LLM’s
role in generating high-quality augmented data is crucial for
overcoming data scarcity, while the detector’s discriminative
capabilities are leveraged not only for misinformation detec-
tion but also to provide a strong feedback signal for refining
the LLM’s generation strategy, thereby minimizing issues like
LLM hallucinations. This iterative refinement process aims
to improve the quality of LLM-generated samples, which,
in turn, enhances the detector’s unsupervised classification
performance. Conversely, the improved classification perfor-
mance, as reflected through the contrastive loss function,
provides a clearer guiding signal for the LLM’s augmentation
strategy. The workflow for this collaboration is divided into
the following three stages:

1) Data Preprocessing and Prompt Orchestration: Raw
data is scraped from social networks using web crawlers
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]
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fetch
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Fig. 2. Data preprocessing examples.

and formatted accordingly. The processed data is fed into
the prompt orchestrator, which generates high-quality
augmented data to expand the CL’s training dimension.

2) LLM-Assisted Feature Extraction and Label Prediction:
Augmented data is paired with the original data and
input into the CL network to extract features and predict
labels. After training, the CL model’s parameters are
frozen, and during testing, the classifier processes the
extracted features to predict labels.

3) Contrastive Loss-Aware Joint Fine-Tuning and Training:
The contrastive loss is leveraged to guide LLM fine-
tuning, ensuring its outputs align with CL’s discrimina-
tive capability. This alignment specifically improves the
LLM’s generation strategy and indirectly optimizes the
feature extraction of the CL-based detector.

A. Data Preprocessing and Prompt Orchestration

Fig. 2 illustrates the structure of each data instance, which
typically includes the original post and its associated re-
sponses. The predefined prompt guides and constrains the
LLM to ensure it can recognize and analyze typical charac-
teristics of misinformation in social networks, such as logical
incoherence, factual inaccuracies, strong emotional tone, and
noticeable biases. Through this guidance, the LLM can capture
subtle clues in the original data that may indicate content
manipulation, thereby accurately identifying potential misin-
formation. While this prompt orchestration provides initial
directional guidance to the LLM, the primary mechanism
for robustly controlling semantic integrity and minimizing
potential hallucinations during the augmentation process is the
subsequent CL-guided LLM fine-tuning, as detailed in Sec-
tion II-C. Once the analysis is complete, the LLM reorganizes
and diversifies the original content to generate semantically
consistent, varied augmented data.

The prompt orchestration should satisfy the following ob-
jectives:

• Holistic Augmentation: Augment data from a global
perspective to effectively capture the dataset’s overall
features and distribution.

• Format Consistency: Ensure generated outputs adhere to
the original data format, maintaining structural integrity
for seamless integration.
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You are given data from a rumor detection dataset, and your task is to enhance the data based on
the following instructions:
1. **Holistic Enhancement**:

- Enhance the data by considering its overall content, not just focusing on isolated parts. Make
sure the enhancements reflect a comprehensive understanding of the entire data piece.
2. **Maintain Format Consistency**:

- Ensure the enhanced data retains the exact same format as the original data. No structural
changes should occur.
3. **Increase Diversity**:

- Focus on making the data more diverse in terms of language expression, without altering the
underlying meaning. The enhanced data should be more varied but semantically identical to the
original.
4. **Preserve Semantics**:

- It is critical that the enhanced data preserves the exact same meaning as the original, even
though the expressions may differ.

Fig. 3. Prompt orchestration example.

• Content Diversity: Encourage varied content generation,
enhancing richness while preserving authenticity.

• Semantic Alignment: Maintain semantic consistency be-
tween the augmented and original data, preserving mean-
ing critical for accurate misinformation detection.

Following these principles, we designed the prompt illus-
trated in Fig.3, ensuring that each requirement is met in
practice. As shown in Fig. 4, the augmented content not only
restructures sentences as a whole to better capture global
semantics. For example, rewriting “an open letter to Trump
voters from his top strategist-turned-defector” as “A public
letter to Trump supporters from his former strategist-turned-
critic”, but also preserves the original data format, including
identical fields and hierarchical reply structures, ensuring
compatibility with downstream processing. The language style
is diversified while retaining the original meaning, such as
changing “They love him” to “They’re fully committed to him”
for greater specificity. Moreover, the semantic core remains
intact; for instance, “She obviously didn’t look at all the havoc
Drumpf has caused. He destroyed the USFL!” becomes “She
clearly ignored all the damage Trump has already done. He
ruined the USFL!”, maintaining the critical tone and factual
references while refining the phrasing for clarity. These exam-
ples collectively demonstrate that the prompt design effectively
enhances data quality and diversity while ensuring structural
and semantic consistency with the original dataset.

B. LLM-Assisted Feature Extraction and Label Prediction

A social network dataset containing I instances is repre-
sented as {x1, x2, . . . , xI}, where xi denotes the i-th instance,
with each instance processed by the LLM. The transpose of the
feature vector for the i-th instance is represented as xT

i , which
is used in various operations such as similarity computation
and feature projection. Using a predefined prompt, the LLM
generates augmented data that maintains semantic consistency
but differs in expression. The CL detector comprises a feature
extraction network based on BERT (Bidirectional Encoder
Representations from Transformers) [30] and a projection head
built on a multilayer perceptron [31] for feature extraction. The
feature representation of xi is denoted as fi. Let W1 represent
the weight matrix of the first layer of the MLP, which maps
input features fi to the hidden layer, and W2 represent the
weight matrix of the second layer, which maps the hidden layer
output to the final representation zi. This process is expressed

{
"uid": "bdf404b551618b1fbff4b9f17c0829ba",
"string_value": "A public letter to Trump supporters from his former strategist-turned-critic URL via",
"replies": [

{
"reply_1": "It won't make a difference. They're fully committed to him.",
"reply_2": "Just excuses. Why the outrage? What's truly wrong with America now, besides those following a divisive demagogue?",
"reply_3": "Bravo! You've finally seen the light—although a bit later than some of us with less political insight.",
"reply_4": "It's not always easy to find clarity in the chaos. Glad to be here in the light!",
"reply_5": "Do you have a solution, or was this just a therapeutic rant?",
"reply_6": "Yes, but it's far too late! She clearly ignored all the damage Trump has already done. He ruined the USFL!",
"reply_7": "Reagan is at the root of today's issues in America. Trickle-down economics failed. Grover Norquist is a menace!",
"reply_8": "Thanks for sharing my article back in March. It means a lot, especially from someone I respect!"

}
]

}

{
"uid": "bdf404b551618b1fbff4b9f17c0829ba",
"string_value": "an open letter to trump voters from his top strategist-turned-defector URL via",
"replies": [

{
"reply_1": "It won't matter. They love him.",
"reply_2": "Excuses. Why so angry? What's wrong w America now, beyond idiots drawn to a hateful demagogue?",
"reply_3": "Kudos! You are now enlightened--albeit much later than we with much less political acumen.",
"reply_4": "Sometimes it is hard to see the light in the forest. Happy to be in the light!",
"reply_5": "have you a solution? Or was this just a cathartic bit of self-flagellation?",
"reply_6": "Yes but way too late! She obviously didn't look at all the havoc Drumpf has caused. He destroyed the USFL!",
"reply_7": "Reagan is the nexus of problems with USA today. Trickle down failed. Grover Norquist is evil!",
"reply_8": "Thank you for sharing my piece back in March. It means so much from someone I admire!"

}
],

}

output

Fig. 4. Data augmentation example.

as a nonlinear transformation, zi = g (fi). Let σ(·) denote the
activation function. The transformation can be written as

zi = W2σ(W1fi). (1)

In the projection space, the similarity function to measure
the similarity between zi and zi′ is defined as

sim(zi, zi′)
∆
=

zi · zi′
∥zi∥ ∥zi′∥

. (2)

The samples involved in the loss calculation include both the
original samples and their augmented counterparts, resulting
in a total of 2I samples. The projection representation of xT

i

is denoted as zTi . Applying (2) to the InfoNCE Loss [32], the
contrastive loss at the n-th epoch is described as

Ln = − 1

2I

I∑
i=1

log
exp

(
sim

(
zi, z

T
i

)/
τ

)
2I∑

i′=1,i′ ̸=i

exp
(

sim (zi, zi′)/τ

) , (3)

where τ is the temperature hyperparameter. Minimizing (3)
encourages samples from the same class to cluster closely
in the projection space while increasing the distance between
samples of different classes. By utilizing the contrastive loss
as a potent feedback signal, the LLM is guided to generate
augmented samples that are not only diverse but also discrim-
inatively valuable for the CL detector. This process inherently
penalizes and reduces the generation of factually inconsistent,
semantically drifting, or otherwise misleading augmented data
that could be characterized as hallucinations.

The classifier in the CL-based detector is defined as f :
G → Y = ∪c∈{1,2,...,C}yc, where C represents the number
of label categories and the labels yc ∈ {NR,FR, TR,UR}
with NR representing Non-Rumor, FR False Rumor, TR True
Rumor, and UR Unverified Rumor. This classifier comprises
a fully connected layer followed by a softmax activation
function. During the testing phase, the extracted feature rep-
resentations are fed into the classifier for category prediction.

In each batch, we treat x1 and its augmented counterpart
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xT
1 as positive samples, since they are semantically similar,

both stemming from the same original instance but with
varied expressions. {x2, . . . , xI} and their augmented ver-
sions {xT

2 , . . . , x
T
I } are considered negative samples as they

originate from different instances and hence are semantically
dissimilar. The CL network’s feature extractor processes these
positive and negative pairs to generate their initial feature
representations. As described in (1), the features are mapped
into a shared feature space to optimize data distribution,
ensuring that semantically similar points are brought closer,
while dissimilar ones are pushed apart. Cosine similarity is
used to quantify the similarity between feature vectors.

Once the feature extraction training is completed, the feature
extractor is frozen. During the testing phase, new data is input
into this frozen feature extractor. The extracted features are
passed into the pre-trained classifier, which maps them to the
predefined categories of rumors. The final prediction outputs
the labels, completing the rumor classification process.

C. Contrastive Loss-Aware Joint Fine-Tuning and Training

In this study, the LLM was strategically and progressively
employed to enhance and diversify social network datasets
rather than being directly involved in feature extraction or
classification. This subsection presents a joint fine-tuning and
training mechanism. The augmented data generated by the
LLM continually expands and enriches the training dataset,
strengthening the CL detector’s feature extraction and classi-
fication in subsequent training rounds.

Mainstream LLM fine-tuning methods include full fine-
tuning [33], prompt learning [34], and parameter-efficient
fine-tuning (PEFT) [35]. Among PEFT methods, low-rank
adaptation (LoRA) [36] achieves efficient parameter updates
by adding low-rank decomposition matrices alongside the
original weight matrices. Based on LoRA, we introduce a
bootstrapped LLM fine-tuning method for data augmentation.

Let θ0 denote the initial LLM. Before the m-th fine-tuning,
θm−1 is used for data augmentation, implying that the dataset
and model parameters evolve iteratively through the fine-
tuning process. The entire training process consists of N
epochs, and the LLM is fine-tuned periodically at the end of
the n-th epoch. Denote the dataset at the end of the n-th epoch
after the m-th fine-tuning as Dn,m. Based on Dn,m and θ0,
the LLM fine-tuned in the m-th iteration is represented as

θm = LoRA (Dn,m, θ0) . (4)

The update vector is computed as ϑm−1 = θm−1 − θ0 (simi-
larly, ϑm = θm − θ0). Each entry in ϑm−1, which exists in a
dim (θ0) dimensional space, can be considered an axis, where
the sign of the parameter indicates the direction along the axis.
Consequently, ϑm−1 can be decomposed into a sign vector
γm−1 ∈ Rdim(θ0) and a magnitude vector ηm−1 ∈ Rdim(θ0),
expressed as ϑm−1 = γm−1 ⊙ ηm−1, where ⊙ denotes
element-wise multiplication. Formally, γm−1 = sgn(ϑm−1)

and ηm−1
∆
= |ϑm−1|. sgn(ϑm−1) returns +1, 0, or −1 depend-

ing on the sign of ϑm−1, and sgn(ϑm−1) · |ϑm−1| = ϑm−1.
The joint fine-tuning process, detailed in Algorithm 1,

consists of the following three key steps:

Algorithm 1: Merge (θm,θm−1,θ0, λm−1, λm, α)
Input: θm, θm−1, θ0, λm−1, λm, α
Output: θ

1 foreach r ∈ {m− 1,m} do
2 ϑr ← θr − θ0;
3 ϑ̂r ← Top(ϑr, q);
4 ϑ̂r ← γ̂r ⊙ η̂r;
5 γr ← sgn(ϑ̂r);
6 ηr ← |ϑ̂r|;
7 for e ∈ dim(θ0) do
8 γ(e) ← sgn(ϑ̂(e)

m−1 + ϑ̂
(e)
m );

9 R(e) ← {r ∈ {m− 1,m}|γ̂(e)
r = γ(e)};

10 ϑ(e) ← 1
|R(e)|

∑
r∈R(e) λrϑ̂

(e)
r ;

11 θ ← θ0 + αϑ;
12 return θ;

1) Trimming. ϑm−1, to be merged, is first trimmed to
remove redundant values, yielding ϑ̂m−1. To eliminate
redundancy, the top q% of the magnitudes in ϑm−1

are retained, while the rest are set to 0 (see line 3).
Subsequently, ϑ̂m−1 is decomposed into the sign vector
γ̂m−1 and the magnitude vector η̂m−1 (see line 4). A
similar procedure is applied to θm.

2) Sign Election. For each e-th entry in γ̂m−1, ϑ̂m−1, and
η̂m−1, the values are denoted as γ̂(e)

m−1, ϑ̂(e)
m−1, and η̂

(e)
m−1.

Let ϑ denote the aggregated task vector, with its sign
vector as γ. Resolving sign conflicts between θm−1 and
θm is a prerequisite for their merging (line 8). To achieve
this, the e-th entry of γ is computed as

γ(e) = sgn(ϑ̂
(e)
m−1 + ϑ̂(e)

m ). (5)

3) Weighted Disjoint Merge. For the e-th parameter in ϑ,
denoted as ϑ̂

(e)
r , only the value from the model with a

sign consistent with γ(e) is retained. Denoted by R(e) =

{r ∈ {m − 1,m}|γ̂(e)
r = γ(e)} the index set. The e-th

parameter of ϑ is computed as

ϑ(e) =
1

|R(e)|
∑

r∈R(e)

λrϑ̂
(e)
r , (6)

where θ
(e)
r belongs to {θ(e)m−1, θ

(e)
m } and λr is θr’s

weight, determined by the Contrastive loss. The merged
LLM is expressed as

θ = θ0 + αϑ, ϑ = [ϑ̂(1), ϑ̂(2), ..., ϑ̂(dim(θ0))]T , (7)

with α being a hyperparameter.

The LLM–CL alignment is embedded into a joint training
framework, as outlined in Algorithm 2. LLM-driven augmen-
tation is performed every T epochs, yielding W =

⌈
N
T

⌉
aug-

mentation cycles over N epochs. During training, contrastive
loss guides the LLM fine-tuning process, effectively suppress-
ing hallucinations from obvious factual errors to subtle mis-
leading cues, by penalizing generations that impair the CL’s
discriminative ability. This iterative feedback loop enables
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Algorithm 2: Alignment (θ0, θm, θm−1, λm−1, λm,
α, Ln, Dn,m, m, n)

Input: θ0, θm, θm−1, λm−1, λm, α, Ln, Dn,m, m, n
Output: θ

1 if n ≤ N then
2 foreach n ∈ {1, 2, . . . , N} do
3 φn ← µLn + (1− µ) 1

n−1

∑n−1
n′=1 Ln′ ;

4 λm ← φm∑m
m′=1

φm′
;

5 θm ← LoRA (Dn,m, θ0);
6 θ ← Merge (θm−1, θm, θ0, λm−1, λm, α);
7 θm−1 ← θ;
8 Dn,m ← Train (θ);
9 if m ≤M then

10 Alignment (θ0, θm, θm−1, λm−1, λm, α, Ln,
Dn,m, m, n);

11 λm−1 ← λm;
12 m← m+ 1;

13 else
14 return;

the LLM to progressively refine its augmentation strategy,
producing samples that are both semantically consistent and
performance-enhancing.

This contrastive loss is also central to our hallucination mit-
igation strategy. If the LLM produces augmented data that is a
product of hallucination (e.g., containing factual inaccuracies,
deviating semantically from the original sample’s class, or
introducing misleading characteristics that obscure true class
features), such samples will likely be poorly discriminated by
the CL network. This poor discrimination translates to a higher
Ln. This error signal is then directly used to adjust the LLM’s
parameters during the fine-tuning phase (Algorithms 1 and 2),
effectively steering the LLM away from generating such
problematic augmentations in subsequent rounds. The loss
value, Ln, as in (3), quantifies the CL model’s ability to learn
distinguishing misinformation features and reflects the quality
of the LLM-augmented data. A smaller Ln indicates that the
augmented data is semantically rich and discriminative, allow-
ing the CL model to effectively distinguish between positive
and negative samples; otherwise, performance degrades. By
monitoring Ln, the algorithm dynamically adjusts the adapter
parameter fusion during the predefined fine-tuning rounds.
To prevent the undue impact from Ln in a single epoch, a
momentum update strategy [37] is employed to evaluate the
LLM’s augmentation effect (see lines 3–4), expressed as

φn = µLn + (1− µ)
1

n− 1

n−1∑
n′=1

Ln′ , (8)

where µ is the influence factor. Based on φn, the weight for
the m-th fine-tuning is adjusted as

λm =
φm∑m

m′=1 φm′
. (9)

By calling LoRA (line 5), a customized LLM, θm, is gener-

ated, and then, by calling Algorithm 1, the fine-tuned LLM
is integrated to produce an optimized LLM (line 6). M deter-
mines the maximum LLM fine-tuning rounds (lines 10–15).
When m > M , the algorithm halts fine-tuning. M can be
manually adjusted as needed.

This alignment process forms a robust, mutually reinforc-
ing feedback loop between the LLM and the CL detector.
Leveraging the LLM’s semantic understanding and generative
capabilities, diverse augmented data is produced to enrich the
CL detector’s training and improve its capacity for capturing
complex semantics. In return, contrastive loss offers a direct,
quantitative signal of data quality, guiding the LLM’s fine-
tuning to reduce hallucinations and generate samples that
strengthen the unsupervised classification. This symbiotic cy-
cle ensures that both components evolve to overcome their
respective limitations, driving continuous optimization of the
entire detection framework.

III. EXPERIMENTAL PREPARATION

A. Dataset Selection

In the experiments, four benchmark datasets widely used
in social media misinformation detection were selected: Twit-
ter15 [38], Twitter16 [38], Weibo [39], and PHEME [40].
Specifically, Twitter15 and Twitter16 contain 1,490 and 818
source tweets, respectively, and support four-class rumor de-
tection, including TR, FR, NR, and UR categories. The Weibo
and PHEME datasets support binary classification, consisting
of 9,128 and 5,922 instances, respectively. The Weibo dataset
includes 4,640 samples labeled as False and 4,488 as True,
while PHEME includes 3,006 False and 2,916 True instances.
To enhance contextual richness for inference, original posts
along with all associated replies were collected via web
crawling from the corresponding social media platforms. For
data partitioning, a standard split was adopted: 70% for
training, 20% for testing, and 10% for validation, ensuring
a comprehensive and reliable evaluation setting.

B. Comparative Methods

To comprehensively evaluate the proposed framework, eight
representative algorithms were selected as baselines:

• BiGCN [41]: Employs GNNs to capture rumor diffusion
in both top-down and bottom-up directions.

• BiMGCL [20]: Leverages a bidirectional graph structure
and multi-level CL to model rumor propagation, reducing
dependence on labeled data and improving detection
through diverse graph structures.

• LSTM [42]: Captures long-range dependencies via gating
mechanisms, effective for sequential and semantic rumor
modeling.

• Text-CNN [43]: Employs CNN with multi-scale convo-
lutional filters to extract discriminative local semantic
patterns efficiently for text classification.

• RCNN [44]: Combines CNN-based local feature extrac-
tion and RNN-based global context modeling to effec-
tively detect rumors.
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TABLE I
CATEGORIZATION OF PROPOSED METHODS

Classification of
Proposed Methods

Choices of base LLM and model size Data Augmentation Rounds
& Fine-tuning Times (W , M )

Qwen-7B Qwen-14B Llama-7B Llama-13B (1, 0) (2, 0) (3, 0) (3, 1) (3, 2)
Proposed-1 ✓ ✓
Proposed-2 ✓ ✓
Proposed-3 ✓ ✓
Proposed-4 ✓ ✓
Proposed-5 ✓ ✓
Proposed-6 ✓ ✓
Proposed-7 ✓ ✓
Proposed-8 ✓ ✓
Proposed-9 ✓ ✓

• HAN [45]: Utilizes dual-level attention mechanisms
(word and sentence) to capture hierarchical text features,
enhancing rumor detection interpretability.

• ELKP [46]: Enhances language models via knowledge-
driven prompting and external knowledge injection, im-
proving semantic reasoning and adaptability for misinfor-
mation detection.

• SRD-PSID [47]: Leverages contrastive self-supervised
learning of heterogeneous social and semantic patterns,
enriching rumor representation and detection accuracy.

To assess the impact of different strategies on performance,
we examine the framework across three key dimensions: the
choice of base LLM (Qwen [48] vs. Llama [49]), the number
of data augmentation rounds (1–3), and the number of fine-
tuning rounds (none, 1, or 2). These dimensions are critical
for understanding how varying LLM sizes and augmentation
strategies influence detection. Table I summarizes nine pro-
posed configurations based on these factors:

• Proposed-1, -2, and -3: Utilize Qwen-7B as the base
LLM, with 1, 2, and 3 data augmentation rounds, respec-
tively, and no fine-tuning.

• Proposed-4 and -5: Also use Qwen-7B, but add 1 or 2
fine-tuning rounds in addition to data augmentation.

• Proposed-6 and -9: Uses a larger Qwen-14B base LLM
with 3 data augmentation rounds to assess the impact of
a larger model on performance.

• Proposed-7 and -8: Employ Llama models with size of
7B, exploring different combinations of data augmenta-
tion rounds and fine-tuning times.

C. Experimental Design and Configuration

We examined the impact of data augmentation, LLM fine-
tuning, and different types and parameter amounts of base
LLMs. The first experiment utilized CL baselines to evaluate
LACL’s performance boundary. The second focused on analyz-
ing how augmentation rounds influence detection performance.
The third assessed the impact of fine-tuning rounds (represent-
ing training costs). The fourth examines resource usage.

Two widely recognized evaluation metrics were employed
to quantitatively analyze and assess the performance of rumor

TABLE II
DEFAULT PARAMETER SETTINGS

Parameter Value

Batch size 256
Training epochs (N ) 25
Augmented cycles (T ) 10
Magnitude filtering ratio (q) top 20%
LLM-fusion hyperparameter (α) 1
Influence factor (µ) 0.99
Maximum LLM fine-tuning rounds (M ) 2
LoRA rank 8
LoRA learning rate 5× 10−5

LoRA training epochs 5

detection methods in social networks, i.e.,

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

and
F1 =

2× TP

2× TP + FP + FN
. (11)

TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively. Accuracy
provides an intuitive measure of correctly identified instances’
proportions, while the F1 score emphasizes the balance be-
tween precision and recall, highlighting the proportion of
correctly classified instances.

Key hyperparameters, learning rate, training epochs, and
batch size were kept consistent throughout the experiments to
ensure a fair evaluation. Detailed training parameters were set
as shown in Table II. This value of q controls the magnitude
filtering process, where the top 20% of the most significant
features are selected during training. A value of α = 1 indicates
a balanced model fusion. In light of the dataset size and label
distribution, LoRA hyperparameters were selected to promote
robust convergence and generalization. A learning rate of
5×10−5 was selected for LoRA (rank = 8) to balance gradient
stability and task adaptation.

Tests ran on a high-performance server featuring an Intel
Core i9-14900K processor, 64GB DDR5 5200MHz RAM,
a 4TB PCIe 4.0 SSD, an ASUS PRIME Z790-P WIFI D5
motherboard, and dual Gigabyte RTX 4090 24GB GPUs.
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TABLE III
GPT-4O DIRECT DETECTION ACCURACY (%) ON TWITTER15 AND 16

Dataset TR NR FR UR Avg Acc

Twitter15 37.15 31.89 42.36 39.04 37.61
Twitter16 32.18 38.94 41.57 43.09 38.94

TABLE IV
GPT-4O DIRECT DETECTION ACCURACY (%) ON WEIBO AND PHEME

Dataset True False Avg Acc

Weibo 58.37 45.92 52.15
PHEME 63.45 49.18 56.32

IV. RESULT ANALYSIS

A. Performance Bound Analysis

Note that LACL does not rely on directly using LLMs for
misinformation detection. Instead, it leverages the semantic
understanding and generation capabilities of LLMs to augment
the CL-based detector in a task-aware, domain-adaptive man-
ner. To contextualize the performance bounds of our method,
we first conducted a preliminary study by directly applying
GPT-4o1, a mainstream LLM, to detect misinformation in
social media content. Specifically, we randomly sampled 200
instances from each of four representative datasets, Twitter15,
Twitter16, Weibo, and PHEME, and input them into GPT-
4o for binary classification (i.e., true or false). As shown
in Table III, the performance of GPT-4o on Twitter15 and
Twitter16 is limited, with average accuracies of only 37.61%
and 38.94%, respectively. The model exhibited considerable
inconsistency across the four rumor types, suggesting difficulty
in handling category-specific nuances in English social media
content. Table IV shows results on the Weibo and PHEME
datasets under binary classification. While performance is
slightly improved compared to Twitter datasets, average accu-
racies of 52.15% (Weibo) and 56.32% (PHEME) still reflect
suboptimal generalization, especially given the complexity
of linguistic and cultural variations present in cross-lingual
misinformation. These results highlight that even advanced
LLMs lack the task-specific discriminative capacity for robust
detection in cross-lingual and culturally nuanced contexts.

Next, we evaluated the upper and lower performance bounds
of the proposed method by comparing them with a range of
representative baselines across the Twitter15 and Twitter16
datasets. The 7B-parameter base LLM served as the primary
subject in all experiments, while the 13B- and 14B-parameter
base LLMs, with three augmentation rounds, were introduced
to explore the performance upper bound. As shown in Table V,
on Twitter15, the Proposed-1 variant achieved an accuracy of
78.11%, surpassing BiGCN (74.52%) and BiMGCL (71.45%)
by 3.59% and 6.66%, respectively. Compared to traditional
sequential and convolutional models such as LSTM (76.43%),
RCNN (73.40%), and Text-CNN (77.45%), Proposed-1 also
demonstrated consistent improvements of 1.68%, 4.71%, and
0.66%, respectively. When compared with the attention-based

1https://chatgpt.com/

HAN (76.79%) and knowledge-enhanced ELKP (75.70%),
Proposed-1 yielded accuracy gains of 1.32% and 2.41%. The
performance of the Llama-based variants was even more
notable. Proposed-6 achieved an accuracy of 81.81%, out-
performing all baselines by a substantial margin: +7.29%
over BiGCN, +10.36% over BiMGCL, +5.38% over LSTM,
+4.36% over Text-CNN, +8.41% over RCNN, +5.02% over
HAN, and +6.11% over ELKP. Proposed-7 and Proposed-8,
which use Llama-7B with different training strategies, further
verified this trend with accuracies of 78.03% and 80.37%,
respectively, while Proposed-9 (based on Llama-13B) achieved
the highest performance at 82.34%, exceeding even Proposed-
6 by 0.53%. These results demonstrate the effectiveness of our
approach and the scalability of LACL across different base
model sizes and configurations.

Similarly, as shown in Table VI, on Twitter16, Proposed-
1 reached an accuracy of 79.63%, outperforming BiGCN
(76.42%) and BiMGCL (75.30%) by 3.21% and 4.33%,
respectively. It also surpassed LSTM (75.92%), RCNN
(76.54%), Text-CNN (71.45%), HAN (77.16%), and ELKP
(77.41%) by 3.71%, 3.09%, 8.18%, 2.47%, and 2.22%, respec-
tively. Among the Llama-based methods, Proposed-6 achieved
an accuracy of 84.56%, leading all baseline models with
clear margins: +8.14% over BiGCN, +9.26% over BiMGCL,
+8.64% over LSTM, +8.02% over RCNN, +7.40% over HAN,
+7.15% over ELKP, and +13.11% over Text-CNN. In addition,
Proposed-7 and Proposed-8 showed promising performance,
reaching 79.91% and 85.08%, respectively. Notably, Proposed-
9 obtained the best accuracy of 85.39%, with an Avg F1
of 85.87%, confirming the method’s robustness and balanced
classification performance across all rumor categories (TR,
NR, FR, UR). These results highlight LACL’s ability to scale
effectively with stronger base LLMs and maintain superior per-
formance across complex misinformation classification tasks.

For the FR category (rumors verified as false or inaccu-
rate), in-depth analysis revealed a consistent performance gap
between our proposed method and several baseline models,
despite the overall superiority of the proposed variants. On
Twitter15, Proposed-1 achieved an F1 score of 75.73%, which
was 0.72% lower than BiGCN and 3.75% lower than the best-
performing Text-CNN (79.48%), and also fell behind models
like HAN and LSTM. Similarly, on Twitter16, BiGCN and
BiMGCL surpassed Proposed-1 by 1.97% and 4.06%.

This gap could be attributed to the dual-effect nature of
LLM-based data augmentation. While LLMs improved gen-
eralization by generating diverse and fluent samples, they
were not inherently equipped to verify factual accuracy. Dur-
ing augmentation, LLMs may unintentionally dilute or even
rationalize key features indicative of falsehood in FR-class
samples. For example, content that originally contained ex-
treme claims, inconsistencies, or manipulative phrasing might
have been softened or rephrased, making the misinformation
appear more credible. This process likely blurred the semantic
boundary between false and true content, thereby undermining
the distinctiveness of the FR category.

In the binary classification setting of the Weibo dataset,
the proposed method demonstrated clear advantages over all
baseline models. As shown in Table VII, Proposed-6 achieved
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TABLE V
PERFORMANCE COMPARISON (%) ON TWITTER15

Method ACC F1 Avg
F1TR NR FR UR

BiGCN 74.52 80.07 68.10 76.45 71.04 73.92
BiMGCL 71.45 76.97 66.87 72.99 68.14 71.24

LSTM 76.43 85.20 66.10 75.77 75.34 75.60
Text-CNN 77.45 87.50 68.70 79.48 74.19 77.47

RCNN 73.40 80.70 64.46 72.94 72.72 72.71
HAN 76.79 86.22 68.33 76.89 75.70 76.79
ELKP 75.70 73.21 74.66 72.48 75.10 73.86

Proposed-1 78.11 90.68 69.42 75.73 74.12 77.48
Proposed-6 81.81 89.57 80.29 78.43 78.01 81.57
Proposed-7 78.03 89.52 70.65 76.49 73.18 77.46
Proposed-8 80.37 89.35 78.13 77.82 75.93 80.31
Proposed-9 82.34 88.97 75.78 83.06 80.84 82.16

TABLE VI
PERFORMANCE COMPARISON (%) ON TWITTER16

Method ACC F1 Avg
F1TR NR FR UR

BiGCN 76.42 86.09 66.68 73.23 75.82 75.45
BiMGCL 75.30 84.79 62.20 75.32 76.36 74.66

LSTM 75.92 90.14 71.11 64.36 81.57 76.80
Text-CNN 71.45 76.97 66.87 72.99 68.14 71.24

RCNN 76.54 90.41 71.26 71.26 77.50 77.06
HAN 77.16 87.17 70.88 70.88 80.00 77.20
ELKP 77.41 76.35 74.40 74.40 76.77 75.77

Proposed-1 79.63 94.59 77.64 71.26 76.92 80.10
Proposed-6 84.56 94.59 78.72 76.92 89.74 84.99
Proposed-7 79.91 93.87 78.92 72.13 76.45 80.34
Proposed-8 85.08 95.92 76.89 77.05 85.73 83.90
Proposed-9 85.39 95.45 80.26 79.87 87.89 85.87

TABLE VII
PERFORMANCE COMPARISON (%) ON WEIBO

Method ACC F1 Avg
F1False True

LSTM 80.84 80.64 81.02 80.83
Text-CNN 83.87 83.94 83.81 83.88

RCNN 84.23 84.38 83.07 83.73
HAN 82.23 81.30 83.04 82.17

SRD-PSID 83.22 83.09 83.24 83.16
Proposed-1 85.30 87.19 88.41 87.80
Proposed-6 91.63 91.42 91.82 91.62
Proposed-7 86.92 86.58 87.26 86.92
Proposed-8 89.47 89.32 89.61 89.47
Proposed-9 90.78 90.65 90.91 90.78

TABLE VIII
PERFORMANCE COMPARISON (%) ON PHEME

Method ACC F1 Avg
F1False True

LSTM 86.89 87.34 86.41 86.88
Text-CNN 85.37 86.08 84.59 85.34

RCNN 87.23 87.48 86.97 87.23
HAN 88.16 88.63 87.65 88.14
ELKP 87.20 87.52 86.08 86.80

Proposed-1 89.01 89.14 88.86 89.00
Proposed-6 91.89 92.21 91.53 91.87
Proposed-7 89.23 88.97 89.48 89.23
Proposed-8 90.87 91.43 90.31 90.87
Proposed-9 91.55 91.98 91.12 91.55

a breakthrough performance with an accuracy of 91.63%
and an average F1 score of 91.62%, both exceeding the
90% threshold. Compared to the best-performing baseline in
accuracy (RCNN, 84.23%) and in average F1 (Text-CNN,
83.88%), Proposed-6 attained substantial improvements of
+7.40% and +7.74%, respectively. Even the lighter Proposed-
1 variant, which applied only a single round of LLM-based
augmentation, still surpassed all baselines with an accuracy
of 85.30% and an average F1 of 87.80%, demonstrating the
effectiveness of our augmentation strategy even under low-
resource configurations.

On the PHEME dataset, as shown in Table VIII, the pro-
posed models maintained a strong lead, although the margin
of improvement was relatively reduced. Proposed-1 achieved
89.01% accuracy and 89.00% average F1, slightly outperform-
ing the best baseline, HAN (88.14%). Proposed-6 continued to
lead across all metrics with 91.89% accuracy, 92.21% F1 for
False, and 91.53% F1 for True, but the relative performance
gap was narrower than that observed on the Weibo dataset.

We also examined the impact of base LLM choice. As
shown in Tables V–VIII, when Llama was used as the
base model, the corresponding methods (Proposed-7, -8, and
-9) consistently demonstrated superior performance across
all four datasets. Due to differences in language-specific
strengths among base models, Llama outperformed Qwen
on the English-based Twitter datasets, while Qwen led on

the Chinese-based Weibo dataset. In the fine-tuned setting
(Proposed-4 and -8), Qwen consistently yielded slightly bet-
ter improvements than Llama, suggesting that Qwen offered
stronger instruction-following capabilities for the detection
task. In the non-fine-tuned configurations (Proposed-1 and -
7), the two base models exhibited a trade-off in performance.
These results indicated that the proposed method is adaptable
to different base LLMs and performs robustly across various
model sizes, confirming its versatility and scalability.

These findings indicated that while the proposed method
generalized well across datasets, its performance was shaped
by the choice of base LLM and parameter scale. In high-
context, semantically rich settings like Weibo, Qwen-based
models achieved the most notable gains, especially with fine-
tuning, whereas Llama-based models excelled on structurally
constrained, English-language datasets such as PHEME.
Larger LLMs generally delivered higher detection accuracy
at the cost of greater computational demands. Overall, the
results validated LACL’s adaptability to diverse language
environments, model sizes, and augmentation strategies, while
consistently delivering superior detection performance.

B. Impact of Data Augmentation Rounds

This experiment investigated the impact of data augmen-
tation rounds on model detection performance. As shown
in Table IX, the detection accuracy on Twitter15 improved
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TABLE IX
RESULTS (%) ON TWITTER15 WITH DIFFERENT AUGMENTATION ROUNDS

Method ACC F1 Avg
F1TR NR FR UR

Proposed-1 78.11 90.68 69.42 75.73 74.12 77.48
Proposed-2 78.45 86.06 75.55 75.49 75.52 78.15
Proposed-3 79.12 87.89 73.91 79.24 74.28 78.83
Proposed-6 81.81 89.57 80.29 78.43 78.01 81.57

TABLE X
RESULTS (%) ON TWITTER16 WITH DIFFERENT AUGMENTATION ROUNDS

Method ACC F1 Avg
F1TR NR FR UR

Proposed-1 79.63 94.59 77.64 71.26 76.92 80.10
Proposed-2 80.86 93.33 75 75.86 80.84 81.17
Proposed-3 83.33 94.28 76.59 78.16 87.67 84.18
Proposed-6 84.56 94.59 78.72 76.92 89.74 84.99
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(a) Proposed-1. (b) Proposed-2. (c) Proposed-3. (d) Proposed-6.

Fig. 5. Feature distribution of different augmentation rounds on Twitter15.
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(a) Proposed-1. (b) Proposed-2. (c) Proposed-3. (c) Proposed-6.

Fig. 6. Feature distribution of different augmentation rounds on Twitter16.

gradually with additional augmentation rounds. Specifically,
Proposed-3 achieved a 0.67% and 1.01% accuracy increase
compared to Proposed-1 and -2, respectively. Similarly, as
presented in Table X for Twitter16, Proposed-3 improved
accuracy by 2.47% and 3.7% compared to Proposed-1 and -2,
although it fell short of Proposed-6, which achieved the highest
accuracy of 84.56%. Feature visualizations further illustrated
that increased augmentation rounds made class boundaries
more distinct. This phenomenon could be attributed to two
factors. First, as the number of augmentation rounds increased,
the generated data samples became more diverse, allowing the
model to learn more comprehensive features. On the other
hand, larger parameter LLMs, with their superior language and
contextual understanding, generated higher-quality samples,
thereby enhancing detection performance.

However, category-specific detection results exhibited no-
ticeable fluctuations. On Twitter15, Proposed-1 achieved the
best performance for the TR (True Rumor) category. As shown
in Figs. 5(a) and 5(b), the TR feature points of Proposed-
1 were more tightly clustered than those of Proposed-2,
indicating more stable class separation. For the NR (Non-
Rumor) category, Proposed-2 outperformed Proposed-3, as
illustrated in Figs. 5(b) and 5(c), yet both remained inferior
to Proposed-6, which exhibited better inter-class separation.
Notably, Fig.5(c) revealed significant overlap between NR and

UR (Unverified Rumor) feature points in Proposed-3, reflecting
ambiguity in feature space. Similar trends were observed on
Twitter16 in Figs. 6(a)–(d), where Proposed-6 consistently
showed stronger feature discrimination across categories.

These fluctuations stem mainly from variations in LLM-
augmented data quality across categories and the occasional
introduction of features misaligned with original class seman-
tics. Although augmentation improved overall performance, its
effect on fine-grained category boundaries remained sensitive
to data quality and semantic consistency.

As shown in Table XI, increasing the LLM augmentation
rounds from 1 to 3 improved classification accuracy on Weibo
from 87.88% to 89.70%, narrowing the F1-score gap between
True and False classes from 0.91% to 0.36%. Feature visu-
alizations (Fig. 7) illustrated that False-class samples transi-
tioned from a bimodal (Proposed-1) to an unimodal distri-
bution (Proposed-2), with decreased overlap between classes.
Although Proposed-3 improved clustering compactness, the
True class consistently retained a bimodal distribution. On
PHEME (Table XII), accuracy improved from 89.01% to
90.61% across augmentation rounds. True and False class F1-
scores increased to 90.20% and 90.99%, respectively. Feature
distributions (Fig. 8) revealed similar clustering enhancements,
shifting the False class from bimodal to unimodal distribution,
and reducing inter-class overlap. However, the True class again
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TABLE XI
RESULTS (%) ON WEIBO WITH DIFFERENT AUGMENTATION ROUNDS

Method ACC F1 Avg
F1False True

Proposed-1 87.88 87.40 88.31 87.86
Proposed-2 88.62 88.30 88.93 88.62
Proposed-3 89.70 89.51 89.87 89.69
Proposed-6 91.63 91.42 91.82 91.62

TABLE XII
RESULTS (%) ON PHEME WITH DIFFERENT AUGMENTATION ROUNDS

Method ACC F1 Avg
F1False True

Proposed-1 89.01 89.14 88.86 89.00
Proposed-2 89.94 90.21 89.66 89.94
Proposed-3 90.61 90.99 90.20 90.60
Proposed-6 91.89 92.21 91.53 91.87
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Fig. 7. Feature distribution of different augmentation rounds on Weibo.
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Fig. 8. Feature distribution of different augmentation rounds on PHEME.

maintained its bimodal feature distribution.
Overall, two conclusions could be drawn: 1) increased

augmentation rounds enhanced sample diversity, aiding com-
prehensive feature learning; 2) larger LLMs produced higher-
quality augmented samples, though larger parameter scales
implied higher training and fine-tuning costs.

C. Impact of LLM Fine-Tuning Rounds

The experimental results above confirmed that the proposed
LACL was highly adaptable to different base LLMs. In this
subsection, we took Qwen-based configurations (Proposed-3,
-4, -5, and -6) as the research objects and investigated the
influence of fine-tuning rounds on detection performance.

As the number of fine-tuning rounds for Qwen-7B in-
creased, LLM-assisted CL detection accuracy improved,
though it did not surpass the performance of Proposed-6.
Specifically, on Twitter15, as shown in Table XIII, F1 scores
for the NR and FR categories fluctuated significantly. Com-
pared to Proposed-3, Proposed-4 saw a 7.27% decrease in the
NR F1 score but a 7.57% increase in the FR F1 score. Other
categories generally showed an upward trend in F1 scores.
Fig. 9 clarified these results: initially, the NR and FR categories
overlapped significantly, which lowered the accuracy for FR.

After two fine-tuning rounds, FR showed stronger clustering
and more compact feature distribution, while NR experienced
weaker clustering and increased overlap with the UR category.

On Twitter16, as shown in Table XIV, the F1 scores
for TR and NR categories steadily improved. For the FR
category, Proposed-4 and -5 achieved F1 scores 1.88% and
1% lower than Proposed-3, respectively. Similarly, in the UR
category, Proposed-4 and -5 exhibited decreases of 1.56% and
0.83% compared to Proposed-3. Fig. 10 illustrated that the
clustering degree of feature points increased with the number
of fine-tuning rounds; however, overlaps for FR, UR, and
NR categories negatively impacted detection precision. This
underscored the model’s progressive optimization in feature
extraction. The recognition of natural samples improved with
iterations, yielding cumulative F1 score gains of 1.63% for
TR and 1.7% for NR. Additionally, classification ambiguity
persisted for boundary samples, particularly in overlapping
regions of FR and UR categories, leading to slight performance
degradation. F1 scores remained within a narrow range of
84–85%, while UR metrics displayed an initial decline fol-
lowed by a recovery.

As shown in Table XV, increasing the number of LLM
fine-tuning rounds (from Proposed-3 to -4 to -5) led to
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TABLE XIII
RESULTS (%) ON TWITTER15 WITH DIFFERENT FINE-TUNING TIMES

Method ACC F1 Avg
F1TR NR FR UR

Proposed-3 79.12 87.89 73.91 79.24 74.28 78.83
Proposed-4 80.13 88.88 79.10 76.64 75.71 80.08
Proposed-5 80.81 89.87 71.83 84.21 77.63 80.89
Proposed-6 81.81 89.57 80.29 78.43 78.01 81.58

TABLE XIV
RESULTS (%) ON TWITTER16 WITH DIFFERENT FINE-TUNING TIMES

Method ACC F1 Avg
F1TR NR FR UR

Proposed-3 83.33 94.28 76.59 78.16 87.67 84.18
Proposed-4 85.24 95.89 77.53 76.28 86.11 83.95
Proposed-5 85.31 95.91 78.29 77.16 86.84 85.55
Proposed-6 84.56 94.59 78.72 76.92 89.74 84.99
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Fig. 9. Feature distribution of different fine-tuning rounds on Twitter15.
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Fig. 10. Feature distribution of different fine-tuning rounds on Twitter16.

consistent performance improvements on the Weibo dataset.
Specifically, accuracy rose from 89.70% to 90.45%, while the
F1-scores for the True and False classes increased to 90.41%
and 90.14%, respectively, indicating enhanced class balance.
Feature distribution visualizations in Fig. 11(a) revealed over-
lapping density contours (e.g., 0.56) between classes and a
bimodal distribution in the True class. With one round of
fine-tuning (Fig. 11(b)), this bimodality persisted in the core
region (0.78–0.89). However, after two rounds (Fig. 11(c)),
feature points became more concentrated in the lower-right
quadrant, suggesting that fine-tuning refined LLM parameters
and promoted tighter intra-class clustering in the feature space.

Similarly, on the PHEME dataset (Table XVI), fine-
tuning (Proposed-4 and -5) resulted in steady performance
gains: accuracy improved from 90.61% to 91.29%, and the
True/False class F1-scores increased from 90.20%/90.99%
to 90.96%/91.61%. Visualization in Fig. 12 showed that
transitioning from no fine-tuning (Proposed-3) to one round
(Proposed-4) reduced class overlap in the central region. Fur-
ther, Fig. 12(b) and (c) demonstrated that Proposed-5 yielded
more compact True-class clusters and sparser density contours
in overlapping regions. Notably, despite these improvements,
the 14B-based Proposed-6 model still outperformed both
Proposed-4 and -5 across all metrics on both datasets.

D. Resource Occupancy Analysis in Offline Training

In this experiment, models of different scales exhibited vary-
ing resource consumption during data augmentation and fine-
tuning processes. For the data augmentation task (Table XVII),
both Qwen-7B and Llama-7B used dual 4090 GPUs with data
parallelism, while larger models, Qwen-14B and Llama-13B,
employed model parallelism.

Data Parallelism involves splitting the data into smaller
batches, which are distributed across multiple GPUs. Each
GPU processes a subset of the data, and the gradients are
averaged across the GPUs during training. This technique is
efficient when the model can fit within the memory of a single
GPU but requires multiple GPUs to handle larger batches. On
the other hand, Model Parallelism divides the model itself
across multiple GPUs. Each GPU stores and processes a
portion of the model, allowing for the training of much larger
models that exceed the memory capacity of a single GPU. This
method is useful for models with large numbers of parameters
but comes with higher inter-GPU communication overhead.

The latter models, which require model parallelism, have a
significantly higher memory footprint compared to the former
models using data parallelism. In the model fine-tuning phase
(Table XVIII), both Qwen-7B and Llama-7B again utilized
dual 4090 GPUs, but the display memory consumption further

This article has been accepted for publication in IEEE Transactions on Computational Social Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSS.2025.3599080

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 13

TABLE XV
RESULTS (%) ON WEIBO WITH DIFFERENT FINE-TUNING TIMES

Method ACC F1 Avg
F1False True

Proposed-3 89.70 89.51 89.51 89.69
Proposed-4 90.23 90.05 90.41 90.23
Proposed-5 90.45 90.14 90.41 90.33
Proposed-6 91.63 91.42 91.82 91.62

TABLE XVI
RESULTS (%) ON PHEME WITH DIFFERENT FINE-TUNING TIMES

Method ACC F1 Avg
F1False True

Proposed-3 90.61 90.99 90.20 90.59
Proposed-4 91.04 91.26 90.79 91.02
Proposed-5 91.29 91.61 90.96 91.28
Proposed-6 91.89 92.21 91.53 91.87

False
True

0.
11

0.11

0.1
1

0.11

0.1
1

0.
22

0.22

0.2
2

0.2
2

0.33

0.33

0.33

0.3
3

0.44

0.44

0.4
4

0.44

0.44

0.56

0.5
6

0.56

0.5
60.67

0.67

0.78

0.89

False
True

0.11

0.11

0.11

0.11

0.
22

0.22

0.22

0.2
2

0.22

0.33

0.33

0.33

0.33

0.3
3

0.33

0.44

0.44

0.44

0.44

0.4
4

0.56

0.56

0.56

0.56

0.67

0.67

0.67

0.67

0.78

0.78

0.78

0.78

0.89

0.89 False
True

0.
11

0.11

0.11

0.11

0.22
0.22

0.22

0.22

0.33

0.33

0.33

0.33

0.
44

0.44

0.44

0.44

0.56

0.56

0.56

0.56

0.6
7

0.67

0.
78

0.78

0.89

0.89

False
True

0.11

0.11

0.11

0.11

0.2
2

0.
22

0.
22

0.2
2

0.33

0.3
3

0.
33

0.3
3

0.44

0.44

0.
44

0.
44

0.4
4

0.56

0.56

0.56

0.
56

0.
56

0.67

0.67

0.67

0.67

0.78

0.78

0.89

0.
89

(a) Proposed-3. (b) Proposed-4. (c) Proposed-5. (d) Proposed-6.

Fig. 11. Feature distribution of different fine-tuning rounds on Weibo.
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Fig. 12. Feature distribution of different fine-tuning rounds on PHEME.

TABLE XVII
MEMORY USAGE AND INFERENCE MODE IN LLM DATA AUGMENTATION

Method(s) Base LLM GPU Avg Mem Usage Inference Mode
Proposed-1 to -5 Qwen-7B Dual RTX 4090 14.4 GB per card Data Parallelism

Proposed-6 Qwen-14B Dual RTX 4090 22.6 GB per card Model Parallelism
Proposed-7 and -8 Llama-7B Dual RTX 4090 14.6 GB per card Data Parallelism

Proposed-9 Llama-13B Dual RTX 4090 21.1 GB per card Model Parallelism

TABLE XVIII
GPU DEVICES AND MEMORY USAGE IN LLM FINE-TUNING

Method(s) Base LLM GPU Avg Mem Usage
Proposed-4
Proposed-5 Qwen-7B Dual RTX 4090 20.9 GB per card

Proposed-8 Llama-7B Dual RTX 4090 21.8 GB per card

increased, highlighting the substantial rise in display memory
demand during fine-tuning. These results demonstrated that
as model size and complexity increased, memory usage grew,
with larger models requiring model parallelism for efficient
inference, significantly increasing GPU memory consumption
compared to smaller models using data parallelism.

V. CONCLUSION

This study introduces LACL, a novel framework that inte-
grates LLMs with CL to advance misinformation detection
in social networks. The innovation lies in leveraging con-
trastive loss-guided LLM fine-tuning for data augmentation,
which generates semantically rich, diverse, and consistent
samples to address challenges such as limited labeled data and
complex semantics. By establishing a feedback loop between
the LLM and CL, LACL progressively enhances both aug-
mentation quality and feature extraction capability. Extensive
experiments on four benchmark datasets demonstrate that
LACL outperforms conventional CL-based methods and direct,
task-unadapted LLM applications, achieving notable gains in
detection accuracy and F1-score, especially in high-context
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environments like Weibo. The results further confirm that fine-
tuned LLMs consistently surpass non-fine-tuned counterparts,
and that LACL maintains robust performance across different
base LLMs and model scales, underscoring its adaptability and
scalability for diverse detection scenarios.

The proposed framework is inherently extensible and, with
domain-specific customization, can be applied to other high-
stakes detection tasks such as cybersecurity threat detection
and medical filtering. Future work will focus on extending
LACL to cross-lingual and multimodal settings, while explor-
ing real-time adaptation and hallucination mitigation strategies
to enhance robustness and applicability.
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